Cargando…
DRCM: a disentangled representation network based on coordinate and multimodal attention for medical image fusion
Recent studies on medical image fusion based on deep learning have made remarkable progress, but the common and exclusive features of different modalities, especially their subsequent feature enhancement, are ignored. Since medical images of different modalities have unique information, special lear...
Autores principales: | Huang, Wanwan, Zhang, Han, Cheng, Yu, Quan, Xiongwen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10656763/ https://www.ncbi.nlm.nih.gov/pubmed/38028809 http://dx.doi.org/10.3389/fphys.2023.1241370 |
Ejemplares similares
-
Multimodal learning for fetal distress diagnosis using a multimodal medical information fusion framework
por: Zhang, Yefei, et al.
Publicado: (2022) -
Multimodal Medical Image Fusion Based on Multiple Latent Low-Rank Representation
por: Lou, Xi-Cheng, et al.
Publicado: (2021) -
A Disentangled Representation Based Brain Image Fusion via Group Lasso Penalty
por: Wang, Anqi, et al.
Publicado: (2022) -
Multimodal Sentiment Analysis Representations Learning via Contrastive Learning with Condense Attention Fusion
por: Wang, Huiru, et al.
Publicado: (2023) -
Asymmetric coordinate attention spectral-spatial feature fusion network for hyperspectral image classification
por: Cheng, Shuli, et al.
Publicado: (2021)