Cargando…
Assessing optimal methods for transferring machine learning models to low-volume and imbalanced clinical datasets: experiences from predicting outcomes of Danish trauma patients
INTRODUCTION: Accurately predicting patient outcomes is crucial for improving healthcare delivery, but large-scale risk prediction models are often developed and tested on specific datasets where clinical parameters and outcomes may not fully reflect local clinical settings. Where this is the case,...
Autores principales: | Millarch, Andreas Skov, Bonde, Alexander, Bonde, Mikkel, Klein, Kiril Vadomovic, Folke, Fredrik, Rudolph, Søren Steemann, Sillesen, Martin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10656776/ https://www.ncbi.nlm.nih.gov/pubmed/38026835 http://dx.doi.org/10.3389/fdgth.2023.1249258 |
Ejemplares similares
-
Assessing the utility of a sliding-windows deep neural network approach for risk prediction of trauma patients
por: Bonde, Alexander, et al.
Publicado: (2023) -
A characterization of trauma laparotomies in a scandinavian setting: an observational study
por: Bentin, Jakob Mejdahl, et al.
Publicado: (2022) -
Assessment of post-trauma complications in eight million trauma cases over a decade in the USA
por: Jakobsen, Rasmus Kirial, et al.
Publicado: (2021) -
Usability and performance expectancy govern spine surgeons’ use of a clinical decision support system for shared decision-making on the choice of treatment of common lumbar degenerative disorders
por: Eiskjær, Søren, et al.
Publicado: (2023) -
Thyroid function in Danish greenhouse workers
por: Toft, Gunnar, et al.
Publicado: (2006)