Cargando…
Visual transformer and deep CNN prediction of high-risk COVID-19 infected patients using fusion of CT images and clinical data
BACKGROUND: Despite the globally reducing hospitalization rates and the much lower risks of Covid-19 mortality, accurate diagnosis of the infection stage and prediction of outcomes are clinically of interest. Advanced current technology can facilitate automating the process and help identifying thos...
Autores principales: | Tehrani, Sara Saberi Moghadam, Zarvani, Maral, Amiri, Paria, Ghods, Zahra, Raoufi, Masoomeh, Safavi-Naini, Seyed Amir Ahmad, Soheili, Amirali, Gharib, Mohammad, Abbasi, Hamid |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10656999/ https://www.ncbi.nlm.nih.gov/pubmed/37978393 http://dx.doi.org/10.1186/s12911-023-02344-8 |
Ejemplares similares
-
Residual Learning: A New Paradigm to Improve Deep Learning-Based Segmentation of the Left Ventricle in Magnetic Resonance Imaging Cardiac Images
por: Zarvani, Maral, et al.
Publicado: (2021) -
Correlation between Chest Computed Tomography Scan Findings and Mortality of COVID-19 Cases; a Cross sectional Study
por: Raoufi, Masoomeh, et al.
Publicado: (2020) -
A CNN-transformer fusion network for COVID-19 CXR image classification
por: Cao, Kai, et al.
Publicado: (2022) -
MMViT-Seg: A lightweight transformer and CNN fusion network for COVID-19 segmentation
por: Yang, Yuan, et al.
Publicado: (2023) -
O-Net: A Novel Framework With Deep Fusion of CNN and Transformer for Simultaneous Segmentation and Classification
por: Wang, Tao, et al.
Publicado: (2022)