Cargando…
GraphTar: applying word2vec and graph neural networks to miRNA target prediction
BACKGROUND: MicroRNAs (miRNAs) are short, non-coding RNA molecules that regulate gene expression by binding to specific mRNAs, inhibiting their translation. They play a critical role in regulating various biological processes and are implicated in many diseases, including cardiovascular, oncological...
Autores principales: | Przybyszewski, Jan, Malawski, Maciej, Lichołai, Sabina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10657114/ https://www.ncbi.nlm.nih.gov/pubmed/37978418 http://dx.doi.org/10.1186/s12859-023-05564-x |
Ejemplares similares
-
KG2Vec: A node2vec-based vectorization model for knowledge graph
por: Wang, YueQun, et al.
Publicado: (2021) -
Words and graphs
por: Kitaev, Sergey, et al.
Publicado: (2015) -
Syntactically-informed word representations from graph neural network
por: Tran, Thy Thy, et al.
Publicado: (2020) -
HaVec: An Efficient de Bruijn Graph Construction Algorithm for Genome Assembly
por: Rahman, Md Mahfuzer, et al.
Publicado: (2017) -
Word2vec convolutional neural networks for classification of news articles and tweets
por: Jang, Beakcheol, et al.
Publicado: (2019)