Cargando…
Automatic craniomaxillofacial landmarks detection in CT images of individuals with dentomaxillofacial deformities by a two-stage deep learning model
BACKGROUND: Accurate cephalometric analysis plays a vital role in the diagnosis and subsequent surgical planning in orthognathic and orthodontics treatment. However, manual digitization of anatomical landmarks in computed tomography (CT) is subject to limitations such as low accuracy, poor repeatabi...
Autores principales: | Tao, Leran, Li, Meng, Zhang, Xu, Cheng, Mengjia, Yang, Yang, Fu, Yijiao, Zhang, Rongbin, Qian, Dahong, Yu, Hongbo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10657133/ https://www.ncbi.nlm.nih.gov/pubmed/37978486 http://dx.doi.org/10.1186/s12903-023-03446-5 |
Ejemplares similares
-
Cephalometric landmark variability among orthodontists and dentomaxillofacial radiologists: a comparative study
por: Durão, Ana Paula Reis, et al.
Publicado: (2015) -
Dentomaxillofacial imaging with panoramic views and cone beam CT
por: Suomalainen, Anni, et al.
Publicado: (2015) -
Artificial intelligence in dentomaxillofacial radiology
por: Gokdeniz, Seyide Tugce, et al.
Publicado: (2022) -
The Reliability of Three-Dimensional Landmark-Based Craniomaxillofacial and Airway Cephalometric Analysis
por: Yao, Kan, et al.
Publicado: (2023) -
Radiobiological risks following dentomaxillofacial imaging: should we be concerned?
por: Belmans, Niels, et al.
Publicado: (2021)