Cargando…
Development of a Machine Learning-Based Model for Accurate Detection and Classification of Cervical Spine Fractures Using CT Imaging
Cervical spine fractures represent a significant healthcare challenge, necessitating accurate detection for appropriate management and improved patient outcomes. This study aims to develop a machine learning-based model utilizing a computed tomography (CT) image dataset to detect and classify cervic...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cureus
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10657145/ https://www.ncbi.nlm.nih.gov/pubmed/38021776 http://dx.doi.org/10.7759/cureus.47328 |
Sumario: | Cervical spine fractures represent a significant healthcare challenge, necessitating accurate detection for appropriate management and improved patient outcomes. This study aims to develop a machine learning-based model utilizing a computed tomography (CT) image dataset to detect and classify cervical spine fractures. Leveraging a large dataset of 4,050 CT images obtained from the Radiological Society of North America (RSNA) Cervical Spine Fracture dataset, we evaluate the potential of machine learning and deep learning algorithms in achieving accurate and reliable cervical spine fracture detection. The model demonstrates outstanding performance, achieving an average precision of 1 and 100% precision, recall, sensitivity, specificity, and accuracy values. These exceptional results highlight the potential of machine learning algorithms to enhance clinical decision-making and facilitate prompt treatment initiation for cervical spine fractures. However, further research and validation efforts are warranted to assess the model's generalizability across diverse populations and real-world clinical settings, ultimately contributing to improved patient outcomes in cervical spine fracture cases. |
---|