Cargando…

Mitophagy-promoting agents and their ability to promote healthy-aging

The removal of damaged mitochondrial components through a process called mitochondrial autophagy (mitophagy) is essential for the proper function of the mitochondrial network. Hence, mitophagy is vital for the health of all aerobic animals, including humans. Unfortunately, mitophagy declines with ag...

Descripción completa

Detalles Bibliográficos
Autores principales: Srivastava, Vijigisha, Gross, Einav
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Portland Press Ltd. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10657188/
https://www.ncbi.nlm.nih.gov/pubmed/37650304
http://dx.doi.org/10.1042/BST20221363
Descripción
Sumario:The removal of damaged mitochondrial components through a process called mitochondrial autophagy (mitophagy) is essential for the proper function of the mitochondrial network. Hence, mitophagy is vital for the health of all aerobic animals, including humans. Unfortunately, mitophagy declines with age. Many age-associated diseases, including Alzheimer's and Parkinson's, are characterized by the accumulation of damaged mitochondria and oxidative damage. Therefore, activating the mitophagy process with small molecules is an emerging strategy for treating multiple aging diseases. Recent studies have identified natural and synthetic compounds that promote mitophagy and lifespan. This article aims to summarize the existing knowledge about these substances. For readers’ convenience, the knowledge is presented in a table that indicates the chemical data of each substance and its effect on lifespan. The impact on healthspan and the molecular mechanism is reported if known. The article explores the potential of utilizing a combination of mitophagy-inducing drugs within a therapeutic framework and addresses the associated challenges of this strategy. Finally, we discuss the process that balances mitophagy, i.e. mitochondrial biogenesis. In this process, new mitochondrial components are generated to replace the ones cleared by mitophagy. Furthermore, some mitophagy-inducing substances activate biogenesis (e.g. resveratrol and metformin). Finally, we discuss the possibility of combining mitophagy and biogenesis enhancers for future treatment. In conclusion, this article provides an up-to-date source of information about natural and synthetic substances that activate mitophagy and, hopefully, stimulates new hypotheses and studies that promote healthy human aging worldwide.