Cargando…
evalPM: a framework for evaluating machine learning models for particulate matter prediction
Air pollution through particulate matter (PM) is one of the largest threats to human health. To understand the causes of PM pollution and enact suitable countermeasures, reliable predictions of future PM concentrations are required. In the scientific literature, many methods exist for machine learni...
Autores principales: | Woltmann, Lucas, Deepe, Jonas, Hartmann, Claudio, Lehner, Wolfgang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10657320/ https://www.ncbi.nlm.nih.gov/pubmed/37979062 http://dx.doi.org/10.1007/s10661-023-11996-y |
Ejemplares similares
-
Machine learning methods to predict particulate matter PM
(2.5)
por: Palanichamy, Naveen, et al.
Publicado: (2022) -
Development and Evaluation of Statistical Models Based on Machine Learning Techniques for Estimating Particulate Matter (PM(2.5) and PM(10)) Concentrations
por: Hong, Wan Yun, et al.
Publicado: (2022) -
Air pollution particulate matter (PM2.5) prediction in South African cities using machine learning techniques
por: Morapedi, Tshepang Duncan, et al.
Publicado: (2023) -
EvalDNA: a machine learning-based tool for the comprehensive evaluation of mammalian genome assembly quality
por: MacDonald, Madolyn L., et al.
Publicado: (2021) -
Heavy metals in submicronic particulate matter (PM(1)) from a Chinese metropolitan city predicted by machine learning models
por: Li, Huiming, et al.
Publicado: (2020)