Cargando…
A novel subject-wise dictionary learning approach using multi-subject fMRI spatial and temporal components
The conventional dictionary learning (DL) algorithms aim to adapt the dictionary/sparse code to individual functional magnetic resonance imaging (fMRI) data. Thus, lacking the capability to consolidate the spatiotemporal diversities offered by other subjects. Considering that subject-wise (sw) data...
Autores principales: | Khalid, Muhammad Usman, Nauman, Malik Muhammad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10657419/ https://www.ncbi.nlm.nih.gov/pubmed/37980391 http://dx.doi.org/10.1038/s41598-023-47420-1 |
Ejemplares similares
-
Multitask fMRI Data Classification via Group-Wise Hybrid Temporal and Spatial Sparse Representations
por: Song, Limei, et al.
Publicado: (2022) -
Brain Decoding Using fMRI Images for Multiple Subjects through Deep Learning
por: Qureshi, Muhammad Bilal, et al.
Publicado: (2022) -
Low-Rank Tucker-2 Model for Multi-Subject fMRI Data Decomposition With Spatial Sparsity Constraint
por: Han, Yue, et al.
Publicado: (2022) -
An integrated cluster‐wise significance measure for fMRI analysis
por: Ge, Yunjiang, et al.
Publicado: (2022) -
Robust brain network identification from multi-subject asynchronous fMRI data
por: Li, Jian, et al.
Publicado: (2020)