Cargando…
Screening UFMylation-associated genes in heart tissues of Ufm1-transgenic mice
UFMylation is a ubiquitination-like modification that is related to endoplasmic reticulum stress and unfolded protein response. A recent study reported that Ufl1, a key enzyme of UFMylation, protects against heart failure, indicating that UFMylation may be associated with heart function regulation....
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10657630/ https://www.ncbi.nlm.nih.gov/pubmed/37980507 http://dx.doi.org/10.1186/s12872-023-03563-7 |
Sumario: | UFMylation is a ubiquitination-like modification that is related to endoplasmic reticulum stress and unfolded protein response. A recent study reported that Ufl1, a key enzyme of UFMylation, protects against heart failure, indicating that UFMylation may be associated with heart function regulation. In the present study, we initially constructed a Flag-6×His-tagged Ufm1ΔSC transgenic (Tg-Ufm1) mouse model that enables UFMylation studies in vivo. Tg-Ufm1 mice showed significant activation of UFMylation in hearts. By using this model, we identified 38 potential Ufm1-binding proteins in heart tissues through LC‒MS/MS methods. We found that these proteins were associated with mitochondria, metabolism and chaperone binding. By using transcriptomic screening, we identified Tnfaip2 as a novel UFMylation-associated gene. Overexpression of Ufm1 significantly upregulated the protein expression of Tnfaip2, whereas isoproterenol treatment decreased Tnfaip2 expression in Tg-Ufm1 mice. These data may provide novel clues for UFMylation in cardiac hypertrophy. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12872-023-03563-7. |
---|