Cargando…
A machine learning-based radiomics model for prediction of tumor mutation burden in gastric cancer
Purpose: To evaluate the potential of machine learning (ML)-based radiomics approach for predicting tumor mutation burden (TMB) in gastric cancer (GC). Methods: The contrast enhanced CT (CECT) images with corresponding clinical information of 256 GC patients were retrospectively collected. Patients...
Autores principales: | Ma, Tingting, Zhang, Yuwei, Zhao, Mengran, Wang, Lingwei, Wang, Hua, Ye, Zhaoxiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10657897/ https://www.ncbi.nlm.nih.gov/pubmed/38028587 http://dx.doi.org/10.3389/fgene.2023.1283090 |
Ejemplares similares
-
A multiphase contrast-enhanced CT radiomics model for prediction of human epidermal growth factor receptor 2 status in advanced gastric cancer
por: Ma, Tingting, et al.
Publicado: (2022) -
The value of machine learning based radiomics model in preoperative detection of perineural invasion in gastric cancer: a two-center study
por: Gao, Xujie, et al.
Publicado: (2023) -
A CT-based radiomics signature for prediction of HER2 overexpression and treatment efficacy of trastuzumab in advanced gastric cancer
por: Ma, Tingting, et al.
Publicado: (2022) -
A CT-based radiomics signature for evaluating tumor infiltrating Treg cells and outcome prediction of gastric cancer
por: Gao, Xujie, et al.
Publicado: (2020) -
Pretreatment Thoracic CT Radiomic Features to Predict Brain Metastases in Patients With ALK-Rearranged Non-Small Cell Lung Cancer
por: Wang, Hua, et al.
Publicado: (2022)