Cargando…
Weakly supervised segmentation models as explainable radiological classifiers for lung tumour detection on CT images
PURPOSE: Interpretability is essential for reliable convolutional neural network (CNN) image classifiers in radiological applications. We describe a weakly supervised segmentation model that learns to delineate the target object, trained with only image-level labels (“image contains object” or “imag...
Autores principales: | O’Shea, Robert, Manickavasagar, Thubeena, Horst, Carolyn, Hughes, Daniel, Cusack, James, Tsoka, Sophia, Cook, Gary, Goh, Vicky |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Vienna
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10657919/ https://www.ncbi.nlm.nih.gov/pubmed/37980637 http://dx.doi.org/10.1186/s13244-023-01542-2 |
Ejemplares similares
-
Sparse Regression in Cancer Genomics: Comparing Variable Selection and Predictions in Real World Data
por: O’Shea, Robert J, et al.
Publicado: (2021) -
Radiomic assessment of oesophageal adenocarcinoma: a critical review of 18F-FDG PET/CT, PET/MRI and CT
por: O’Shea, Robert J., et al.
Publicado: (2022) -
Weakly supervised spatial relation extraction from radiology reports
por: Datta, Surabhi, et al.
Publicado: (2023) -
Deepfake forensics analysis: An explainable hierarchical ensemble of weakly supervised models
por: Silva, Samuel Henrique, et al.
Publicado: (2022) -
Weakly Supervised Sensitive Heatmap framework to classify and localize diabetic retinopathy lesions
por: Al-Mukhtar, Mohammed, et al.
Publicado: (2021)