Cargando…

Intestinal microbiota dysbiosis and liver metabolomic changes during brain death

BACKGROUND: Whether a causative link exists between brain death (BD) and intestinal microbiota dysbiosis is unclear, and the distortion in liver metabolism associated with BD requires further exploration. METHODS: A rat model of BD was constructed and sustained for 9 h (BD group, n=6). The sham grou...

Descripción completa

Detalles Bibliográficos
Autores principales: Tao, Ruolin, Guo, Wenzhi, Li, Tao, Wang, Yong, Wang, Panliang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10658038/
https://www.ncbi.nlm.nih.gov/pubmed/38028643
http://dx.doi.org/10.1016/j.jointm.2023.02.006
Descripción
Sumario:BACKGROUND: Whether a causative link exists between brain death (BD) and intestinal microbiota dysbiosis is unclear, and the distortion in liver metabolism associated with BD requires further exploration. METHODS: A rat model of BD was constructed and sustained for 9 h (BD group, n=6). The sham group (n=6) underwent the same procedures, but the catheter was inserted into the epidural space without ballooning. Intestinal contents and portal vein plasma were collected for microbiota sequencing and microbial metabolite detection. Liver tissue was resected to investigate metabolic alterations, and the results were compared with those of a sham group. RESULTS: α-diversity indexes showed that BD did not alter bacterial diversity. Microbiota dysbiosis occurred after 9 h of BD. At the family level, Peptostreptococcaceae and Bacteroidaceae were both decreased in the BD group. At the genus level, Romboutsia, Bacteroides, Erysipelotrichaceae_UCG_004, Faecalibacterium, and Barnesiella were enriched in the sham group, whereas Ruminococcaceae_UCG_007, Lachnospiraceae_ND3007_group, and Papillibacter were enriched in the BD group. Short-chain fatty acids, bile acids, and 132 other microbial metabolites remained unchanged in both the intestinal contents and portal vein plasma of the BD group. BD caused alterations in 65 metabolites in the liver, of which, carbohydrates, amino acids, and organic acids accounted for 64.6%. Additionally, 80.0% of the differential metabolites were decreased in the BD group livers. Galactose metabolism was the most significant metabolic pathway in the BD group. CONCLUSIONS: BD resulted in microbiota dysbiosis in rats; however, this dysbiosis did not alter microbial metabolites. Deterioration in liver metabolic function during extended periods of BD may reflect a continuous worsening in energy deficiency.