Cargando…
Targeted proteomic analysis reveals that crocodile oil from Crocodylus siamensis may enhance hepatic energy metabolism in rats
The liver is a key organ governing body energy metabolism. Dietary fats influence energy metabolism and mitochondrial functioning. Crocodile oil (CO) is rich in mono- and polyunsaturated fatty acids that contain natural anti-inflammatory and healing properties. Our study examined how CO affects the...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Japanese Association for Laboratory Animal Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10658085/ https://www.ncbi.nlm.nih.gov/pubmed/37032112 http://dx.doi.org/10.1538/expanim.23-0009 |
_version_ | 1785137353485975552 |
---|---|
author | Fungfuang, Wirasak Srisuksai, Krittika Santativongchai, Pitchaya Charoenlappanit, Sawanya Phaonakrop, Narumon Roytrakul, Sittiruk Tulayakul, Phitsanu Parunyakul, Kongphop |
author_facet | Fungfuang, Wirasak Srisuksai, Krittika Santativongchai, Pitchaya Charoenlappanit, Sawanya Phaonakrop, Narumon Roytrakul, Sittiruk Tulayakul, Phitsanu Parunyakul, Kongphop |
author_sort | Fungfuang, Wirasak |
collection | PubMed |
description | The liver is a key organ governing body energy metabolism. Dietary fats influence energy metabolism and mitochondrial functioning. Crocodile oil (CO) is rich in mono- and polyunsaturated fatty acids that contain natural anti-inflammatory and healing properties. Our study examined how CO affects the expressions of liver proteins involved in energy metabolism in rats. Twenty-one male Sprague Dawley rats were divided into three groups and underwent oral gavage with 3 ml/kg of sterile water (N group), CO (CO group), or palm oil (PO group) for 7 weeks. Body weight, energy intake, liver weight, liver indexes, blood lipid profiles, and liver-energy intermediates were measured. The liver proteome was analyzed using shotgun proteomics, and the functions and network interactions of several candidate proteins were predicted using the STITCH v.5.0 software. Body weights, energy intake, liver contents, and lipid profiles did not differ between the groups. However, hepatic oxaloacetate and malate levels were significantly higher in the CO group than in the PO group. Targeted proteomics reveals that 22 out of 1,790 unique proteins in the CO group were involved in energy-generating pathways, including the tricarboxylic acid cycle and oxidative phosphorylation (OXPHOS), and were correlated with the AMP-activated protein kinase signaling pathway. Cluster analysis of 59 differentially expressed proteins showed that OXPHOS-associated proteins were upregulated in the CO group and that three glycolytic metabolism-related proteins were downregulated in the CO group. CO may enhance hepatic energy metabolism by regulating the expressions of energy expenditure-related proteins. |
format | Online Article Text |
id | pubmed-10658085 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Japanese Association for Laboratory Animal Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-106580852023-01-01 Targeted proteomic analysis reveals that crocodile oil from Crocodylus siamensis may enhance hepatic energy metabolism in rats Fungfuang, Wirasak Srisuksai, Krittika Santativongchai, Pitchaya Charoenlappanit, Sawanya Phaonakrop, Narumon Roytrakul, Sittiruk Tulayakul, Phitsanu Parunyakul, Kongphop Exp Anim Original The liver is a key organ governing body energy metabolism. Dietary fats influence energy metabolism and mitochondrial functioning. Crocodile oil (CO) is rich in mono- and polyunsaturated fatty acids that contain natural anti-inflammatory and healing properties. Our study examined how CO affects the expressions of liver proteins involved in energy metabolism in rats. Twenty-one male Sprague Dawley rats were divided into three groups and underwent oral gavage with 3 ml/kg of sterile water (N group), CO (CO group), or palm oil (PO group) for 7 weeks. Body weight, energy intake, liver weight, liver indexes, blood lipid profiles, and liver-energy intermediates were measured. The liver proteome was analyzed using shotgun proteomics, and the functions and network interactions of several candidate proteins were predicted using the STITCH v.5.0 software. Body weights, energy intake, liver contents, and lipid profiles did not differ between the groups. However, hepatic oxaloacetate and malate levels were significantly higher in the CO group than in the PO group. Targeted proteomics reveals that 22 out of 1,790 unique proteins in the CO group were involved in energy-generating pathways, including the tricarboxylic acid cycle and oxidative phosphorylation (OXPHOS), and were correlated with the AMP-activated protein kinase signaling pathway. Cluster analysis of 59 differentially expressed proteins showed that OXPHOS-associated proteins were upregulated in the CO group and that three glycolytic metabolism-related proteins were downregulated in the CO group. CO may enhance hepatic energy metabolism by regulating the expressions of energy expenditure-related proteins. Japanese Association for Laboratory Animal Science 2023-04-07 2023 /pmc/articles/PMC10658085/ /pubmed/37032112 http://dx.doi.org/10.1538/expanim.23-0009 Text en ©2023 Japanese Association for Laboratory Animal Science https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/) |
spellingShingle | Original Fungfuang, Wirasak Srisuksai, Krittika Santativongchai, Pitchaya Charoenlappanit, Sawanya Phaonakrop, Narumon Roytrakul, Sittiruk Tulayakul, Phitsanu Parunyakul, Kongphop Targeted proteomic analysis reveals that crocodile oil from Crocodylus siamensis may enhance hepatic energy metabolism in rats |
title | Targeted proteomic analysis reveals that crocodile oil from Crocodylus siamensis may enhance hepatic energy metabolism in rats |
title_full | Targeted proteomic analysis reveals that crocodile oil from Crocodylus siamensis may enhance hepatic energy metabolism in rats |
title_fullStr | Targeted proteomic analysis reveals that crocodile oil from Crocodylus siamensis may enhance hepatic energy metabolism in rats |
title_full_unstemmed | Targeted proteomic analysis reveals that crocodile oil from Crocodylus siamensis may enhance hepatic energy metabolism in rats |
title_short | Targeted proteomic analysis reveals that crocodile oil from Crocodylus siamensis may enhance hepatic energy metabolism in rats |
title_sort | targeted proteomic analysis reveals that crocodile oil from crocodylus siamensis may enhance hepatic energy metabolism in rats |
topic | Original |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10658085/ https://www.ncbi.nlm.nih.gov/pubmed/37032112 http://dx.doi.org/10.1538/expanim.23-0009 |
work_keys_str_mv | AT fungfuangwirasak targetedproteomicanalysisrevealsthatcrocodileoilfromcrocodylussiamensismayenhancehepaticenergymetabolisminrats AT srisuksaikrittika targetedproteomicanalysisrevealsthatcrocodileoilfromcrocodylussiamensismayenhancehepaticenergymetabolisminrats AT santativongchaipitchaya targetedproteomicanalysisrevealsthatcrocodileoilfromcrocodylussiamensismayenhancehepaticenergymetabolisminrats AT charoenlappanitsawanya targetedproteomicanalysisrevealsthatcrocodileoilfromcrocodylussiamensismayenhancehepaticenergymetabolisminrats AT phaonakropnarumon targetedproteomicanalysisrevealsthatcrocodileoilfromcrocodylussiamensismayenhancehepaticenergymetabolisminrats AT roytrakulsittiruk targetedproteomicanalysisrevealsthatcrocodileoilfromcrocodylussiamensismayenhancehepaticenergymetabolisminrats AT tulayakulphitsanu targetedproteomicanalysisrevealsthatcrocodileoilfromcrocodylussiamensismayenhancehepaticenergymetabolisminrats AT parunyakulkongphop targetedproteomicanalysisrevealsthatcrocodileoilfromcrocodylussiamensismayenhancehepaticenergymetabolisminrats |