Cargando…
Sparse convolutional neural network for high-resolution skull shape completion and shape super-resolution
Traditional convolutional neural network (CNN) methods rely on dense tensors, which makes them suboptimal for spatially sparse data. In this paper, we propose a CNN model based on sparse tensors for efficient processing of high-resolution shapes represented as binary voxel occupancy grids. In contra...
Autores principales: | Li, Jianning, Gsaxner, Christina, Pepe, Antonio, Schmalstieg, Dieter, Kleesiek, Jens, Egger, Jan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10658170/ https://www.ncbi.nlm.nih.gov/pubmed/37981641 http://dx.doi.org/10.1038/s41598-023-47437-6 |
Ejemplares similares
-
SkullBreak / SkullFix – Dataset for automatic cranial implant design and a benchmark for volumetric shape learning tasks
por: Kodym, Oldřich, et al.
Publicado: (2021) -
MUG500+: Database of 500 high-resolution healthy human skulls and 29 craniotomy skulls and implants
por: Li, Jianning, et al.
Publicado: (2021) -
Joint bayesian convolutional sparse coding for image super-resolution
por: Ge, Qi, et al.
Publicado: (2018) -
Synthetic skull bone defects for automatic patient-specific craniofacial implant design
por: Li, Jianning, et al.
Publicado: (2021) -
Remote sensing image super-resolution using multi-scale convolutional sparse coding network
por: Cheng, Ruihong, et al.
Publicado: (2022)