Cargando…

An olsalazine nanoneedle-embedded inulin hydrogel reshapes intestinal homeostasis in inflammatory bowel disease

Inflammatory bowel disease (IBD) is a chronic and refractory condition characterized by disrupted epithelial barrier, dysregulated immune balance, and altered gut microbiota. Nano-enabled interventions for restoring gut homeostasis have the potential to alleviate inflammation in IBD. Herein, we deve...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Zhuangzhuang, Pan, Yang, Guo, Zhaoyuan, Fan, Xi, Pan, Qingqing, Gao, Wenxia, Luo, Kui, Pu, Yuji, He, Bin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: KeAi Publishing 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10658185/
https://www.ncbi.nlm.nih.gov/pubmed/38024237
http://dx.doi.org/10.1016/j.bioactmat.2023.10.028
Descripción
Sumario:Inflammatory bowel disease (IBD) is a chronic and refractory condition characterized by disrupted epithelial barrier, dysregulated immune balance, and altered gut microbiota. Nano-enabled interventions for restoring gut homeostasis have the potential to alleviate inflammation in IBD. Herein, we developed a combination of olsalazine (Olsa)-based nanoneedles and microbiota-regulating inulin gel to reshape intestinal homeostasis and relieve inflammation. The Olsa-derived nanoneedles exhibited reactive oxygen species scavenging ability and anti-inflammatory effects in lipopolysaccharide-simulated macrophages. The composite of nanoneedles and inulin gel (Cu(2)(Olsa)/Gel) displayed a macroporous structure, improved bio-adhesion, and enhanced colon retention after oral administration. Mechanistically, the composite effectively downregulated pro-inflammatory cytokine levels and promoted epithelial barrier repair through anti-inflammatory and antioxidant therapies, resulting in significant alleviation of colitis in three animal models of IBD. Furthermore, analysis of gut microbiota revealed that Cu(2)(Olsa)/Gel treatment increased the diversity of intestinal microflora and decreased the relative abundance of pathogenic bacteria such as Proteobacteria. Overall, this study provides a self-delivering nanodrug and dietary fiber hydrogel composite for IBD therapy, offering an efficient approach to restore intestinal homeostasis.