Cargando…
Omics-CNN: A comprehensive pipeline for predictive analytics in quantitative omics using one-dimensional convolutional neural networks
BACKGROUND AND OBJECTIVE: The development of machine learning-based models that can be used for the prediction of severe diseases has been one of the main concerns of the scientific community. The current study seeks to expand a highly sophisticated tool, the Convolutional Neural Networks, making it...
Autores principales: | Zompola, Anastasia, Korfiati, Aigli, Theofilatos, Konstantinos, Mavroudi, Seferina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10658203/ https://www.ncbi.nlm.nih.gov/pubmed/38027840 http://dx.doi.org/10.1016/j.heliyon.2023.e21165 |
Ejemplares similares
-
Reducing Opioid Prescriptions by Identifying Responders on Topical Analgesic Treatment Using an Individualized Medicine and Predictive Analytics Approach
por: Gudin, Jeffrey, et al.
Publicado: (2020) -
Discovery of stroke-related blood biomarkers from gene expression network models
por: Theofilatos, Konstantinos, et al.
Publicado: (2019) -
MEvA-X: a hybrid multiobjective evolutionary tool using an XGBoost classifier for biomarkers discovery on biomedical datasets
por: Panagiotopoulos, Konstantinos, et al.
Publicado: (2023) -
Quo vadis computational analysis of PPI data or why the future isn't here yet
por: Theofilatos, Konstantinos A., et al.
Publicado: (2015) -
A survey on computational taste predictors
por: Malavolta, Marta, et al.
Publicado: (2022)