Cargando…
The indigenous microbial diversity involved in the spontaneous fermentation of red dragon fruit (Hylocereus polyrhizus) identified by means of molecular tools
Red dragon fruit (RDF) is well-known for its high nutritional content, especially the red pigment betacyanins that possess high antioxidant activity. Natural fermentation is an ancient yet outstanding technique that relies on the autochthonous microbiota from fruits and vegetables surfaces to preser...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10658323/ https://www.ncbi.nlm.nih.gov/pubmed/38027851 http://dx.doi.org/10.1016/j.heliyon.2023.e21940 |
_version_ | 1785137393211277312 |
---|---|
author | Lim, Teck Wei Choo, Kah Yee Lim, Renee Lay Hong Pui, Liew Phing Tan, Chin Ping Ho, Chun Wai |
author_facet | Lim, Teck Wei Choo, Kah Yee Lim, Renee Lay Hong Pui, Liew Phing Tan, Chin Ping Ho, Chun Wai |
author_sort | Lim, Teck Wei |
collection | PubMed |
description | Red dragon fruit (RDF) is well-known for its high nutritional content, especially the red pigment betacyanins that possess high antioxidant activity. Natural fermentation is an ancient yet outstanding technique that relies on the autochthonous microbiota from fruits and vegetables surfaces to preserve and improve the nutritional values and quality of the food product. The present study was to evaluate and identify the indigenous microbial community (bacteria and fungi) that are involved in the natural fermentation of RDF. Results revealed a total of twenty bacterial pure cultures and nine fungal pure cultures were successfully isolated from fermented red dragon fruit drink (FRDFD). For the first time, the PCR amplification of 16S rRNA and ITS regions and sequence analysis suggested nine genera of bacteria and three genera of fungi (Aureobasidium pullulans, Clavispora opuntiae, and Talaromyces aurantiacus) present in the FRDFD. Four dominant (≥10 % isolates) bacteria species identified from FRDFD were Klebsiella pneumonia, Brevibacillus parabrevis, Bacillus tequilensis and Bacillus subtilis. The carbohydrate fermentation test showed that all the indigenous microbes identified were able to serve as useful starter culture by fermenting sucrose and glucose, thereby producing acid to lower the pH of FRDFD to around pH 4 for better betacyanins stability. The present study provides a more comprehensive understanding of the indigenous microbial community that serves as the starter culture in the fermentation of RDF. Besides, this study provides a useful guide for future research to be conducted on studying the rare bacterial strains (such as B. tequilensis) identified from the FRDFD for their potential bioactivities and applications in medical treatment and functional foods industries. |
format | Online Article Text |
id | pubmed-10658323 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-106583232023-11-07 The indigenous microbial diversity involved in the spontaneous fermentation of red dragon fruit (Hylocereus polyrhizus) identified by means of molecular tools Lim, Teck Wei Choo, Kah Yee Lim, Renee Lay Hong Pui, Liew Phing Tan, Chin Ping Ho, Chun Wai Heliyon Research Article Red dragon fruit (RDF) is well-known for its high nutritional content, especially the red pigment betacyanins that possess high antioxidant activity. Natural fermentation is an ancient yet outstanding technique that relies on the autochthonous microbiota from fruits and vegetables surfaces to preserve and improve the nutritional values and quality of the food product. The present study was to evaluate and identify the indigenous microbial community (bacteria and fungi) that are involved in the natural fermentation of RDF. Results revealed a total of twenty bacterial pure cultures and nine fungal pure cultures were successfully isolated from fermented red dragon fruit drink (FRDFD). For the first time, the PCR amplification of 16S rRNA and ITS regions and sequence analysis suggested nine genera of bacteria and three genera of fungi (Aureobasidium pullulans, Clavispora opuntiae, and Talaromyces aurantiacus) present in the FRDFD. Four dominant (≥10 % isolates) bacteria species identified from FRDFD were Klebsiella pneumonia, Brevibacillus parabrevis, Bacillus tequilensis and Bacillus subtilis. The carbohydrate fermentation test showed that all the indigenous microbes identified were able to serve as useful starter culture by fermenting sucrose and glucose, thereby producing acid to lower the pH of FRDFD to around pH 4 for better betacyanins stability. The present study provides a more comprehensive understanding of the indigenous microbial community that serves as the starter culture in the fermentation of RDF. Besides, this study provides a useful guide for future research to be conducted on studying the rare bacterial strains (such as B. tequilensis) identified from the FRDFD for their potential bioactivities and applications in medical treatment and functional foods industries. Elsevier 2023-11-07 /pmc/articles/PMC10658323/ /pubmed/38027851 http://dx.doi.org/10.1016/j.heliyon.2023.e21940 Text en © 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Article Lim, Teck Wei Choo, Kah Yee Lim, Renee Lay Hong Pui, Liew Phing Tan, Chin Ping Ho, Chun Wai The indigenous microbial diversity involved in the spontaneous fermentation of red dragon fruit (Hylocereus polyrhizus) identified by means of molecular tools |
title | The indigenous microbial diversity involved in the spontaneous fermentation of red dragon fruit (Hylocereus polyrhizus) identified by means of molecular tools |
title_full | The indigenous microbial diversity involved in the spontaneous fermentation of red dragon fruit (Hylocereus polyrhizus) identified by means of molecular tools |
title_fullStr | The indigenous microbial diversity involved in the spontaneous fermentation of red dragon fruit (Hylocereus polyrhizus) identified by means of molecular tools |
title_full_unstemmed | The indigenous microbial diversity involved in the spontaneous fermentation of red dragon fruit (Hylocereus polyrhizus) identified by means of molecular tools |
title_short | The indigenous microbial diversity involved in the spontaneous fermentation of red dragon fruit (Hylocereus polyrhizus) identified by means of molecular tools |
title_sort | indigenous microbial diversity involved in the spontaneous fermentation of red dragon fruit (hylocereus polyrhizus) identified by means of molecular tools |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10658323/ https://www.ncbi.nlm.nih.gov/pubmed/38027851 http://dx.doi.org/10.1016/j.heliyon.2023.e21940 |
work_keys_str_mv | AT limteckwei theindigenousmicrobialdiversityinvolvedinthespontaneousfermentationofreddragonfruithylocereuspolyrhizusidentifiedbymeansofmoleculartools AT chookahyee theindigenousmicrobialdiversityinvolvedinthespontaneousfermentationofreddragonfruithylocereuspolyrhizusidentifiedbymeansofmoleculartools AT limreneelayhong theindigenousmicrobialdiversityinvolvedinthespontaneousfermentationofreddragonfruithylocereuspolyrhizusidentifiedbymeansofmoleculartools AT puiliewphing theindigenousmicrobialdiversityinvolvedinthespontaneousfermentationofreddragonfruithylocereuspolyrhizusidentifiedbymeansofmoleculartools AT tanchinping theindigenousmicrobialdiversityinvolvedinthespontaneousfermentationofreddragonfruithylocereuspolyrhizusidentifiedbymeansofmoleculartools AT hochunwai theindigenousmicrobialdiversityinvolvedinthespontaneousfermentationofreddragonfruithylocereuspolyrhizusidentifiedbymeansofmoleculartools AT limteckwei indigenousmicrobialdiversityinvolvedinthespontaneousfermentationofreddragonfruithylocereuspolyrhizusidentifiedbymeansofmoleculartools AT chookahyee indigenousmicrobialdiversityinvolvedinthespontaneousfermentationofreddragonfruithylocereuspolyrhizusidentifiedbymeansofmoleculartools AT limreneelayhong indigenousmicrobialdiversityinvolvedinthespontaneousfermentationofreddragonfruithylocereuspolyrhizusidentifiedbymeansofmoleculartools AT puiliewphing indigenousmicrobialdiversityinvolvedinthespontaneousfermentationofreddragonfruithylocereuspolyrhizusidentifiedbymeansofmoleculartools AT tanchinping indigenousmicrobialdiversityinvolvedinthespontaneousfermentationofreddragonfruithylocereuspolyrhizusidentifiedbymeansofmoleculartools AT hochunwai indigenousmicrobialdiversityinvolvedinthespontaneousfermentationofreddragonfruithylocereuspolyrhizusidentifiedbymeansofmoleculartools |