Cargando…

The indigenous microbial diversity involved in the spontaneous fermentation of red dragon fruit (Hylocereus polyrhizus) identified by means of molecular tools

Red dragon fruit (RDF) is well-known for its high nutritional content, especially the red pigment betacyanins that possess high antioxidant activity. Natural fermentation is an ancient yet outstanding technique that relies on the autochthonous microbiota from fruits and vegetables surfaces to preser...

Descripción completa

Detalles Bibliográficos
Autores principales: Lim, Teck Wei, Choo, Kah Yee, Lim, Renee Lay Hong, Pui, Liew Phing, Tan, Chin Ping, Ho, Chun Wai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10658323/
https://www.ncbi.nlm.nih.gov/pubmed/38027851
http://dx.doi.org/10.1016/j.heliyon.2023.e21940
_version_ 1785137393211277312
author Lim, Teck Wei
Choo, Kah Yee
Lim, Renee Lay Hong
Pui, Liew Phing
Tan, Chin Ping
Ho, Chun Wai
author_facet Lim, Teck Wei
Choo, Kah Yee
Lim, Renee Lay Hong
Pui, Liew Phing
Tan, Chin Ping
Ho, Chun Wai
author_sort Lim, Teck Wei
collection PubMed
description Red dragon fruit (RDF) is well-known for its high nutritional content, especially the red pigment betacyanins that possess high antioxidant activity. Natural fermentation is an ancient yet outstanding technique that relies on the autochthonous microbiota from fruits and vegetables surfaces to preserve and improve the nutritional values and quality of the food product. The present study was to evaluate and identify the indigenous microbial community (bacteria and fungi) that are involved in the natural fermentation of RDF. Results revealed a total of twenty bacterial pure cultures and nine fungal pure cultures were successfully isolated from fermented red dragon fruit drink (FRDFD). For the first time, the PCR amplification of 16S rRNA and ITS regions and sequence analysis suggested nine genera of bacteria and three genera of fungi (Aureobasidium pullulans, Clavispora opuntiae, and Talaromyces aurantiacus) present in the FRDFD. Four dominant (≥10 % isolates) bacteria species identified from FRDFD were Klebsiella pneumonia, Brevibacillus parabrevis, Bacillus tequilensis and Bacillus subtilis. The carbohydrate fermentation test showed that all the indigenous microbes identified were able to serve as useful starter culture by fermenting sucrose and glucose, thereby producing acid to lower the pH of FRDFD to around pH 4 for better betacyanins stability. The present study provides a more comprehensive understanding of the indigenous microbial community that serves as the starter culture in the fermentation of RDF. Besides, this study provides a useful guide for future research to be conducted on studying the rare bacterial strains (such as B. tequilensis) identified from the FRDFD for their potential bioactivities and applications in medical treatment and functional foods industries.
format Online
Article
Text
id pubmed-10658323
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-106583232023-11-07 The indigenous microbial diversity involved in the spontaneous fermentation of red dragon fruit (Hylocereus polyrhizus) identified by means of molecular tools Lim, Teck Wei Choo, Kah Yee Lim, Renee Lay Hong Pui, Liew Phing Tan, Chin Ping Ho, Chun Wai Heliyon Research Article Red dragon fruit (RDF) is well-known for its high nutritional content, especially the red pigment betacyanins that possess high antioxidant activity. Natural fermentation is an ancient yet outstanding technique that relies on the autochthonous microbiota from fruits and vegetables surfaces to preserve and improve the nutritional values and quality of the food product. The present study was to evaluate and identify the indigenous microbial community (bacteria and fungi) that are involved in the natural fermentation of RDF. Results revealed a total of twenty bacterial pure cultures and nine fungal pure cultures were successfully isolated from fermented red dragon fruit drink (FRDFD). For the first time, the PCR amplification of 16S rRNA and ITS regions and sequence analysis suggested nine genera of bacteria and three genera of fungi (Aureobasidium pullulans, Clavispora opuntiae, and Talaromyces aurantiacus) present in the FRDFD. Four dominant (≥10 % isolates) bacteria species identified from FRDFD were Klebsiella pneumonia, Brevibacillus parabrevis, Bacillus tequilensis and Bacillus subtilis. The carbohydrate fermentation test showed that all the indigenous microbes identified were able to serve as useful starter culture by fermenting sucrose and glucose, thereby producing acid to lower the pH of FRDFD to around pH 4 for better betacyanins stability. The present study provides a more comprehensive understanding of the indigenous microbial community that serves as the starter culture in the fermentation of RDF. Besides, this study provides a useful guide for future research to be conducted on studying the rare bacterial strains (such as B. tequilensis) identified from the FRDFD for their potential bioactivities and applications in medical treatment and functional foods industries. Elsevier 2023-11-07 /pmc/articles/PMC10658323/ /pubmed/38027851 http://dx.doi.org/10.1016/j.heliyon.2023.e21940 Text en © 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Research Article
Lim, Teck Wei
Choo, Kah Yee
Lim, Renee Lay Hong
Pui, Liew Phing
Tan, Chin Ping
Ho, Chun Wai
The indigenous microbial diversity involved in the spontaneous fermentation of red dragon fruit (Hylocereus polyrhizus) identified by means of molecular tools
title The indigenous microbial diversity involved in the spontaneous fermentation of red dragon fruit (Hylocereus polyrhizus) identified by means of molecular tools
title_full The indigenous microbial diversity involved in the spontaneous fermentation of red dragon fruit (Hylocereus polyrhizus) identified by means of molecular tools
title_fullStr The indigenous microbial diversity involved in the spontaneous fermentation of red dragon fruit (Hylocereus polyrhizus) identified by means of molecular tools
title_full_unstemmed The indigenous microbial diversity involved in the spontaneous fermentation of red dragon fruit (Hylocereus polyrhizus) identified by means of molecular tools
title_short The indigenous microbial diversity involved in the spontaneous fermentation of red dragon fruit (Hylocereus polyrhizus) identified by means of molecular tools
title_sort indigenous microbial diversity involved in the spontaneous fermentation of red dragon fruit (hylocereus polyrhizus) identified by means of molecular tools
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10658323/
https://www.ncbi.nlm.nih.gov/pubmed/38027851
http://dx.doi.org/10.1016/j.heliyon.2023.e21940
work_keys_str_mv AT limteckwei theindigenousmicrobialdiversityinvolvedinthespontaneousfermentationofreddragonfruithylocereuspolyrhizusidentifiedbymeansofmoleculartools
AT chookahyee theindigenousmicrobialdiversityinvolvedinthespontaneousfermentationofreddragonfruithylocereuspolyrhizusidentifiedbymeansofmoleculartools
AT limreneelayhong theindigenousmicrobialdiversityinvolvedinthespontaneousfermentationofreddragonfruithylocereuspolyrhizusidentifiedbymeansofmoleculartools
AT puiliewphing theindigenousmicrobialdiversityinvolvedinthespontaneousfermentationofreddragonfruithylocereuspolyrhizusidentifiedbymeansofmoleculartools
AT tanchinping theindigenousmicrobialdiversityinvolvedinthespontaneousfermentationofreddragonfruithylocereuspolyrhizusidentifiedbymeansofmoleculartools
AT hochunwai theindigenousmicrobialdiversityinvolvedinthespontaneousfermentationofreddragonfruithylocereuspolyrhizusidentifiedbymeansofmoleculartools
AT limteckwei indigenousmicrobialdiversityinvolvedinthespontaneousfermentationofreddragonfruithylocereuspolyrhizusidentifiedbymeansofmoleculartools
AT chookahyee indigenousmicrobialdiversityinvolvedinthespontaneousfermentationofreddragonfruithylocereuspolyrhizusidentifiedbymeansofmoleculartools
AT limreneelayhong indigenousmicrobialdiversityinvolvedinthespontaneousfermentationofreddragonfruithylocereuspolyrhizusidentifiedbymeansofmoleculartools
AT puiliewphing indigenousmicrobialdiversityinvolvedinthespontaneousfermentationofreddragonfruithylocereuspolyrhizusidentifiedbymeansofmoleculartools
AT tanchinping indigenousmicrobialdiversityinvolvedinthespontaneousfermentationofreddragonfruithylocereuspolyrhizusidentifiedbymeansofmoleculartools
AT hochunwai indigenousmicrobialdiversityinvolvedinthespontaneousfermentationofreddragonfruithylocereuspolyrhizusidentifiedbymeansofmoleculartools