Cargando…
4D‐CT deformable image registration using unsupervised recursive cascaded full‐resolution residual networks
A novel recursive cascaded full‐resolution residual network (RCFRR‐Net) for abdominal four‐dimensional computed tomography (4D‐CT) image registration was proposed. The entire network was end‐to‐end and trained in the unsupervised approach, which meant that the deformation vector field, which present...
Autores principales: | Xu, Lei, Jiang, Ping, Tsui, Tiffany, Liu, Junyan, Zhang, Xiping, Yu, Lequan, Niu, Tianye |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10658570/ https://www.ncbi.nlm.nih.gov/pubmed/38023695 http://dx.doi.org/10.1002/btm2.10587 |
Ejemplares similares
-
An Unsupervised 3D Image Registration Network for Brain MRI Deformable Registration
por: Huang, Min, et al.
Publicado: (2022) -
Edge-Aware Pyramidal Deformable Network for Unsupervised Registration of Brain MR Images
por: Cao, Yiqin, et al.
Publicado: (2021) -
Inter-fraction deformable image registration using unsupervised deep learning for CBCT-guided abdominal radiotherapy
por: Xie, Huiqiao, et al.
Publicado: (2023) -
Learning intervention-induced deformations for non-rigid MR-CT registration and electrode localization in epilepsy patients
por: Onofrey, John A., et al.
Publicado: (2015) -
Cortical surface registration using unsupervised learning
por: Cheng, Jieyu, et al.
Publicado: (2020)