Cargando…

Interactive cognitive maps support flexible behavior under threat

In social environments, survival can depend upon inferring and adapting to other agents’ goal-directed behavior. However, it remains unclear how humans achieve this, despite the fact that many decisions must account for complex, dynamic agents acting according to their own goals. Here, we use a pred...

Descripción completa

Detalles Bibliográficos
Autores principales: Wise, Toby, Charpentier, Caroline J., Dayan, Peter, Mobbs, Dean
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10658881/
https://www.ncbi.nlm.nih.gov/pubmed/37610871
http://dx.doi.org/10.1016/j.celrep.2023.113008
Descripción
Sumario:In social environments, survival can depend upon inferring and adapting to other agents’ goal-directed behavior. However, it remains unclear how humans achieve this, despite the fact that many decisions must account for complex, dynamic agents acting according to their own goals. Here, we use a predator-prey task (total [Formula: see text]) to demonstrate that humans exploit an interactive cognitive map of the social environment to infer other agents’ preferences and simulate their future behavior, providing for flexible, generalizable responses. A model-based inverse reinforcement learning model explained participants’ inferences about threatening agents’ preferences, with participants using this inferred knowledge to enact generalizable, model-based behavioral responses. Using tree-search planning models, we then found that behavior was best explained by a planning algorithm that incorporated simulations of the threat’s goal-directed behavior. Our results indicate that humans use a cognitive map to determine other agents’ preferences, facilitating generalized predictions of their behavior and effective responses.