Cargando…

Genome-wide analysis of sugar transporter genes in maize (Zea mays L.): identification, characterization and their expression profiles during kernel development

Sugar transporters (STs) play a crucial role in the development of maize kernels. However, very limited information about STs in maize is known. In this study, sixty-eight ZmST genes were identified from the maize genome and classified into eight major groups based on phylogenetic relationship. Gene...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Nan, Liu, Yanfeng, Xu, Tao, Zhou, Xiaoyan, Xu, Heyang, Zhang, Hongxia, Zhan, Renhui, Wang, Limin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10658905/
https://www.ncbi.nlm.nih.gov/pubmed/38025667
http://dx.doi.org/10.7717/peerj.16423
Descripción
Sumario:Sugar transporters (STs) play a crucial role in the development of maize kernels. However, very limited information about STs in maize is known. In this study, sixty-eight ZmST genes were identified from the maize genome and classified into eight major groups based on phylogenetic relationship. Gene structure analysis revealed that members within the same group shared similar exon numbers. Synteny analysis indicated that ZmSTs underwent 15 segmental duplication events under purifying selection. Three-dimensional structure of ZmSTs demonstrated the formation of a compact helix bundle composed of 8–13 trans-membrane domains. Various development-related cis-acting elements, enriched in promoter regions, were correlated with the transcriptional response of ZmSTs during kernel development. Transcriptional expression profiles exhibited expression diversity of various ZmST genes in roots, stems, leaves, tassels, cobs, embryos, endosperms and seeds tissues. During kernel development, the expression of 24 ZmST genes was significantly upregulated in the early stage of grain filling. This upregulation coincided with the sharply increased grain-filling rate observed in the early stage. Overall, our findings shed light on the characteristics of ZmST genes in maize and provide a foundation for further functional studies.