Cargando…

A preliminary investigation of the subcutaneous tissue reaction to a 3D printed polydioxanone device in horses

BACKGROUND: A 3D printed self-locking device made of polydioxanone (PDO) was developed to facilitate a standardized ligation technique. The subcutaneous tissue reaction to the device was evaluated after implantation in ten horses of mixed age, sex and breed and compared to loops of poly(lactic-co-gl...

Descripción completa

Detalles Bibliográficos
Autores principales: Sjöberg, Ida, Law, Ellen, Södersten, Fredrik, Höglund, Odd Viking, Wattle, Ove
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10659009/
https://www.ncbi.nlm.nih.gov/pubmed/37986118
http://dx.doi.org/10.1186/s13028-023-00710-0
Descripción
Sumario:BACKGROUND: A 3D printed self-locking device made of polydioxanone (PDO) was developed to facilitate a standardized ligation technique. The subcutaneous tissue reaction to the device was evaluated after implantation in ten horses of mixed age, sex and breed and compared to loops of poly(lactic-co-glycolic acid) (PLGA). In two of the horses, the implants were removed before closing the skin. The appearance of the implants and surrounding tissue was followed over time using ultrasonography. Implants were removed after 10 and 27 (± 1) days for histologic examination. RESULTS: On macroscopic inspection at day 10, the PDO-device was fragmented and the surrounding tissue was oedematous. On ultrasonographic examination, the device was seen as a hyperechoic structure with strong acoustic shadowing that could be detected 4 months post-implantation, but not at 7 months. Histology revealed a transient granulomatous inflammation, i.e., a foreign body reaction, which surrounded both PDO and PLGA implants. The type and intensity of the inflammation varied between individuals and tissue category. CONCLUSIONS: The 3D printed PDO-device caused a transient inflammatory reaction in the subcutaneous tissue and complete resorption occurred between 4 and 7 months. Considering the intended use as a ligation device the early fragmentation warrants further adjustments of both material and the 3D printing process before the device can be used in a clinical setting.