Cargando…
Variability analysis of LC-MS experimental factors and their impact on machine learning
BACKGROUND: Machine learning (ML) technologies, especially deep learning (DL), have gained increasing attention in predictive mass spectrometry (MS) for enhancing the data-processing pipeline from raw data analysis to end-user predictions and rescoring. ML models need large-scale datasets for traini...
Autores principales: | Rehfeldt, Tobias Greisager, Krawczyk, Konrad, Echers, Simon Gregersen, Marcatili, Paolo, Palczynski, Pawel, Röttger, Richard, Schwämmle, Veit |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10659119/ https://www.ncbi.nlm.nih.gov/pubmed/37983748 http://dx.doi.org/10.1093/gigascience/giad096 |
Ejemplares similares
-
Toward an
Integrated Machine Learning Model of a Proteomics
Experiment
por: Neely, Benjamin A., et al.
Publicado: (2023) -
Insight on physicochemical properties governing peptide MS1 response in HPLC-ESI-MS/MS: A deep learning approach
por: Abdul-Khalek, Naim, et al.
Publicado: (2023) -
Correction: Quantifying Online News Media Coverage of the COVID-19 Pandemic: Text Mining Study and Resource
por: Krawczyk, Konrad, et al.
Publicado: (2021) -
Quantifying Online News Media Coverage of the COVID-19 Pandemic: Text Mining Study and Resource
por: Krawczyk, Konrad, et al.
Publicado: (2021) -
Data mining patented antibody sequences
por: Krawczyk, Konrad, et al.
Publicado: (2021)