Cargando…
Fairness as an afterthought: An American perspective on fairness in model developer-clinician user collaborations
Numerous ethics guidelines have been handed down over the last few years on the ethical applications of machine learning models. Virtually every one of them mentions the importance of “fairness” in the development and use of these models. Unfortunately, though, these ethics documents omit providing...
Autores principales: | Banja, John, Gichoya, Judy Wawira, Martinez-Martin, Nicole, Waller, Lance A., Clifford, Gari D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10659157/ https://www.ncbi.nlm.nih.gov/pubmed/37983258 http://dx.doi.org/10.1371/journal.pdig.0000386 |
Ejemplares similares
-
Operationalising fairness in medical algorithms
por: Parbhoo, Sonali, et al.
Publicado: (2022) -
Equity in essence: a call for operationalising fairness in machine learning for healthcare
por: Wawira Gichoya, Judy, et al.
Publicado: (2021) -
Fair enough: A sideways look
por: Frey, Jeremy G.
Publicado: (2021) -
Fairness in scientific publishing
por: Matthews, Philippa C.
Publicado: (2017) -
FAIR, open, and free does not mean no restrictions
por: Jeffery, Keith G.
Publicado: (2021)