Cargando…
MIGGRI: A multi-instance graph neural network model for inferring gene regulatory networks for Drosophila from spatial expression images
Recent breakthrough in spatial transcriptomics has brought great opportunities for exploring gene regulatory networks (GRNs) from a brand-new perspective. Especially, the local expression patterns and spatio-temporal regulation mechanisms captured by spatial expression images allow more delicate del...
Autores principales: | Huang, Yuyang, Yu, Gufeng, Yang, Yang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10659162/ https://www.ncbi.nlm.nih.gov/pubmed/37939200 http://dx.doi.org/10.1371/journal.pcbi.1011623 |
Ejemplares similares
-
Multi-instance learning of graph neural networks for aqueous pK(a) prediction
por: Xiong, Jiacheng, et al.
Publicado: (2021) -
Inductive inference of gene regulatory network using supervised and semi-supervised graph neural networks
por: Wang, Juexin, et al.
Publicado: (2020) -
Graph Neural Network(GNN) Inference of FPGA
por: Fuad, Kazi Ahmed Asif
Publicado: (2019) -
COVID-19 infection inference with graph neural networks
por: Song, Kyungwoo, et al.
Publicado: (2023) -
A graph neural network framework for causal inference in brain networks
por: Wein, S., et al.
Publicado: (2021)