Cargando…
Neural network extrapolation to distant regions of the protein fitness landscape
Machine learning (ML) has transformed protein engineering by constructing models of the underlying sequence-function landscape to accelerate the discovery of new biomolecules. ML-guided protein design requires models, trained on local sequence-function information, to accurately predict distant fitn...
Autores principales: | Fahlberg, Sarah A, Freschlin, Chase R, Heinzelman, Pete, Romero, Philip A |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10659313/ https://www.ncbi.nlm.nih.gov/pubmed/37987009 http://dx.doi.org/10.1101/2023.11.08.566287 |
Ejemplares similares
-
Neural networks to learn protein sequence–function relationships from deep mutational scanning data
por: Gelman, Sam, et al.
Publicado: (2021) -
Inferring protein fitness landscapes from laboratory evolution experiments
por: D’Costa, Sameer, et al.
Publicado: (2023) -
Discovery of human ACE2 variants with altered recognition by the SARS-CoV-2 spike protein
por: Heinzelman, Pete, et al.
Publicado: (2020) -
Discovery of human ACE2 variants with altered recognition by the SARS-CoV-2 spike protein
por: Heinzelman, Pete, et al.
Publicado: (2021) -
Directed evolution of angiotensin‐converting enzyme 2 peptidase activity profiles for therapeutic applications
por: Heinzelman, Pete, et al.
Publicado: (2023)