Cargando…
Federated Learning for multi-omics: a performance evaluation in Parkinson’s disease
While machine learning (ML) research has recently grown more in popularity, its application in the omics domain is constrained by access to sufficiently large, high-quality datasets needed to train ML models. Federated Learning (FL) represents an opportunity to enable collaborative curation of such...
Autores principales: | Danek, Benjamin, Makarious, Mary B., Dadu, Anant, Vitale, Dan, Nalls, Mike A, Sun, Jimeng, Faghri, Faraz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10659429/ https://www.ncbi.nlm.nih.gov/pubmed/37986893 http://dx.doi.org/10.1101/2023.10.04.560604 |
Ejemplares similares
-
omicSynth: an Open Multi-omic Community Resource for Identifying Druggable Targets across Neurodegenerative Diseases
por: Alvarado, Chelsea X., et al.
Publicado: (2023) -
Multi-modality machine learning predicting Parkinson’s disease
por: Makarious, Mary B., et al.
Publicado: (2022) -
Genetic risk factor clustering within and across neurodegenerative diseases
por: Koretsky, Mathew J, et al.
Publicado: (2023) -
Identification and prediction of Parkinson’s disease subtypes and progression using machine learning in two cohorts
por: Dadu, Anant, et al.
Publicado: (2022) -
Uncovering the complexities of biological structures with network-based learning: An application in SARS-CoV-2
por: Faghri, Faraz, et al.
Publicado: (2021)