Cargando…
Semantically Redundant Training Data Removal and Deep Model Classification Performance: A Study with Chest X-rays
Deep learning (DL) has demonstrated its innate capacity to independently learn hierarchical features from complex and multi-dimensional data. A common understanding is that its performance scales up with the amount of training data. Another data attribute is the inherent variety. It follows, therefo...
Autores principales: | Rajaraman, Sivaramakrishnan, Zamzmi, Ghada, Yang, Feng, Liang, Zhaohui, Xue, Zhiyun, Antani, Sameer |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cornell University
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10659445/ https://www.ncbi.nlm.nih.gov/pubmed/37986725 |
Ejemplares similares
-
Assessing the Impact of Image Resolution on Deep Learning for TB Lesion Segmentation on Frontal Chest X-rays
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2023) -
Chest X-ray Bone Suppression for Improving Classification of Tuberculosis-Consistent Findings
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2021) -
Uncertainty Quantification in Segmenting Tuberculosis-Consistent Findings in Frontal Chest X-rays
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2022) -
A Systematic Evaluation of Ensemble Learning Methods for Fine-Grained Semantic Segmentation of Tuberculosis-Consistent Lesions in Chest Radiographs
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2022) -
Detecting Tuberculosis-Consistent Findings in Lateral Chest X-Rays Using an Ensemble of CNNs and Vision Transformers
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2022)