Cargando…

Enhancing Phenotype Recognition in Clinical Notes Using Large Language Models: PhenoBCBERT and PhenoGPT

To enhance phenotype recognition in clinical notes of genetic diseases, we developed two models - PhenoBCBERT and PhenoGPT - for expanding the vocabularies of Human Phenotype Ontology (HPO) terms. While HPO offers a standardized vocabulary for phenotypes, existing tools often fail to capture the ful...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Jingye, Liu, Cong, Deng, Wendy, Wu, Da, Weng, Chunhua, Zhou, Yunyun, Wang, Kai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cornell University 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10659449/
https://www.ncbi.nlm.nih.gov/pubmed/37986722
Descripción
Sumario:To enhance phenotype recognition in clinical notes of genetic diseases, we developed two models - PhenoBCBERT and PhenoGPT - for expanding the vocabularies of Human Phenotype Ontology (HPO) terms. While HPO offers a standardized vocabulary for phenotypes, existing tools often fail to capture the full scope of phenotypes, due to limitations from traditional heuristic or rule-based approaches. Our models leverage large language models (LLMs) to automate the detection of phenotype terms, including those not in the current HPO. We compared these models to PhenoTagger, another HPO recognition tool, and found that our models identify a wider range of phenotype concepts, including previously uncharacterized ones. Our models also showed strong performance in case studies on biomedical literature. We evaluated the strengths and weaknesses of BERT-based and GPT-based models in aspects such as architecture and accuracy. Overall, our models enhance automated phenotype detection from clinical texts, improving downstream analyses on human diseases.