Cargando…
Probing long COVID through a proteomic lens: a comprehensive two-year longitudinal cohort study of hospitalised survivors
BACKGROUND: As a debilitating condition that can impact a whole spectrum of people and involve multi-organ systems, long COVID has aroused the most attention than ever. However, mechanisms of long COVID are not clearly understood, and underlying biomarkers that can affect the long-term consequences...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10660018/ https://www.ncbi.nlm.nih.gov/pubmed/37924708 http://dx.doi.org/10.1016/j.ebiom.2023.104851 |
_version_ | 1785137671808483328 |
---|---|
author | Gu, Xiaoying Wang, Siyuan Zhang, Wanying Li, Caihong Guo, Li Wang, Zai Li, Haibo Zhang, Hui Zhou, Yuhan Liang, Weijian Li, Hui Liu, Yan Wang, Yeming Huang, Lixue Dong, Tao Zhang, Dingyu Wong, Catherine C.L. Cao, Bin |
author_facet | Gu, Xiaoying Wang, Siyuan Zhang, Wanying Li, Caihong Guo, Li Wang, Zai Li, Haibo Zhang, Hui Zhou, Yuhan Liang, Weijian Li, Hui Liu, Yan Wang, Yeming Huang, Lixue Dong, Tao Zhang, Dingyu Wong, Catherine C.L. Cao, Bin |
author_sort | Gu, Xiaoying |
collection | PubMed |
description | BACKGROUND: As a debilitating condition that can impact a whole spectrum of people and involve multi-organ systems, long COVID has aroused the most attention than ever. However, mechanisms of long COVID are not clearly understood, and underlying biomarkers that can affect the long-term consequences of COVID-19 are paramount to be identified. METHODS: Participants for the current study were from a cohort study of COVID-19 survivors discharged from hospital between Jan 7, and May 29, 2020. We profiled the proteomic of plasma samples from hospitalised COVID-19 survivors at 6-month, 1-year, and 2-year after symptom onset and age and sex matched healthy controls. Fold-change of >2 or <0.5, and false-discovery rate adjusted P value of 0.05 were used to filter differentially expressed proteins (DEPs). In-genuity pathway analysis was performed to explore the down-stream effects in the dataset of significantly up- or down-regulated proteins. Proteins were integrated with long-term consequences of COVID-19 survivors to explore potential biomarkers of long COVID. FINDINGS: The proteomic of 709 plasma samples from 181 COVID-19 survivors and 181 matched healthy controls was profiled. In both COVID-19 and control group, 114 (63%) were male. The results indicated four major recovery modes of biological processes. Pathways related to cell–matrix interactions and cytoskeletal remodeling and hypertrophic cardiomyopathy and dilated cardiomyopathy pathways recovered relatively earlier which was before 1-year after infection. Majority of immune response pathways, complement and coagulation cascade, and cholesterol metabolism returned to similar status of matched healthy controls later but before 2-year after infection. Fc receptor signaling pathway still did not return to status similar to healthy controls at 2-year follow-up. Pathways related to neuron generation and differentiation showed persistent suppression across 2-year after infection. Among 98 DEPs from the above pathways, evidence was found for association of 11 proteins with lung function recovery, with the associations consistent at two consecutive or all three follow-ups. These proteins were mainly enriched in complement and coagulation (COMP, PLG, SERPINE1, SRGN, COL1A1, FLNA, and APOE) and hypertrophic/dilated cardiomyopathy (TPM2, TPM1, and AGT) pathways. Two DEPs (APOA4 and LRP1) involved in both neuron and cholesterol pathways showed associations with smell disorder. INTERPRETATION: The study findings provided molecular insights into potential mechanism of long COVID, and put forward biomarkers for more precise intervention to reduce burden of long COVID. FUNDING: National Natural Science Foundation of China; 10.13039/501100005150Chinese Academy of Medical Sciences (CAMS) Innovation Fund for Medical Sciences; Clinical Research Operating Fund of Central High Level Hospitals; the Talent Program of the Chinese Academy of Medical Science; Training Program of the Big Science Strategy Plan; 10.13039/501100002855Ministry of Science and Technology of the People's Republic of China; New Cornerstone Science Foundation; Peking Union Medical College Education Foundation; Research Funds from Health@InnoHK Program. |
format | Online Article Text |
id | pubmed-10660018 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-106600182023-11-03 Probing long COVID through a proteomic lens: a comprehensive two-year longitudinal cohort study of hospitalised survivors Gu, Xiaoying Wang, Siyuan Zhang, Wanying Li, Caihong Guo, Li Wang, Zai Li, Haibo Zhang, Hui Zhou, Yuhan Liang, Weijian Li, Hui Liu, Yan Wang, Yeming Huang, Lixue Dong, Tao Zhang, Dingyu Wong, Catherine C.L. Cao, Bin eBioMedicine Articles BACKGROUND: As a debilitating condition that can impact a whole spectrum of people and involve multi-organ systems, long COVID has aroused the most attention than ever. However, mechanisms of long COVID are not clearly understood, and underlying biomarkers that can affect the long-term consequences of COVID-19 are paramount to be identified. METHODS: Participants for the current study were from a cohort study of COVID-19 survivors discharged from hospital between Jan 7, and May 29, 2020. We profiled the proteomic of plasma samples from hospitalised COVID-19 survivors at 6-month, 1-year, and 2-year after symptom onset and age and sex matched healthy controls. Fold-change of >2 or <0.5, and false-discovery rate adjusted P value of 0.05 were used to filter differentially expressed proteins (DEPs). In-genuity pathway analysis was performed to explore the down-stream effects in the dataset of significantly up- or down-regulated proteins. Proteins were integrated with long-term consequences of COVID-19 survivors to explore potential biomarkers of long COVID. FINDINGS: The proteomic of 709 plasma samples from 181 COVID-19 survivors and 181 matched healthy controls was profiled. In both COVID-19 and control group, 114 (63%) were male. The results indicated four major recovery modes of biological processes. Pathways related to cell–matrix interactions and cytoskeletal remodeling and hypertrophic cardiomyopathy and dilated cardiomyopathy pathways recovered relatively earlier which was before 1-year after infection. Majority of immune response pathways, complement and coagulation cascade, and cholesterol metabolism returned to similar status of matched healthy controls later but before 2-year after infection. Fc receptor signaling pathway still did not return to status similar to healthy controls at 2-year follow-up. Pathways related to neuron generation and differentiation showed persistent suppression across 2-year after infection. Among 98 DEPs from the above pathways, evidence was found for association of 11 proteins with lung function recovery, with the associations consistent at two consecutive or all three follow-ups. These proteins were mainly enriched in complement and coagulation (COMP, PLG, SERPINE1, SRGN, COL1A1, FLNA, and APOE) and hypertrophic/dilated cardiomyopathy (TPM2, TPM1, and AGT) pathways. Two DEPs (APOA4 and LRP1) involved in both neuron and cholesterol pathways showed associations with smell disorder. INTERPRETATION: The study findings provided molecular insights into potential mechanism of long COVID, and put forward biomarkers for more precise intervention to reduce burden of long COVID. FUNDING: National Natural Science Foundation of China; 10.13039/501100005150Chinese Academy of Medical Sciences (CAMS) Innovation Fund for Medical Sciences; Clinical Research Operating Fund of Central High Level Hospitals; the Talent Program of the Chinese Academy of Medical Science; Training Program of the Big Science Strategy Plan; 10.13039/501100002855Ministry of Science and Technology of the People's Republic of China; New Cornerstone Science Foundation; Peking Union Medical College Education Foundation; Research Funds from Health@InnoHK Program. Elsevier 2023-11-03 /pmc/articles/PMC10660018/ /pubmed/37924708 http://dx.doi.org/10.1016/j.ebiom.2023.104851 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Articles Gu, Xiaoying Wang, Siyuan Zhang, Wanying Li, Caihong Guo, Li Wang, Zai Li, Haibo Zhang, Hui Zhou, Yuhan Liang, Weijian Li, Hui Liu, Yan Wang, Yeming Huang, Lixue Dong, Tao Zhang, Dingyu Wong, Catherine C.L. Cao, Bin Probing long COVID through a proteomic lens: a comprehensive two-year longitudinal cohort study of hospitalised survivors |
title | Probing long COVID through a proteomic lens: a comprehensive two-year longitudinal cohort study of hospitalised survivors |
title_full | Probing long COVID through a proteomic lens: a comprehensive two-year longitudinal cohort study of hospitalised survivors |
title_fullStr | Probing long COVID through a proteomic lens: a comprehensive two-year longitudinal cohort study of hospitalised survivors |
title_full_unstemmed | Probing long COVID through a proteomic lens: a comprehensive two-year longitudinal cohort study of hospitalised survivors |
title_short | Probing long COVID through a proteomic lens: a comprehensive two-year longitudinal cohort study of hospitalised survivors |
title_sort | probing long covid through a proteomic lens: a comprehensive two-year longitudinal cohort study of hospitalised survivors |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10660018/ https://www.ncbi.nlm.nih.gov/pubmed/37924708 http://dx.doi.org/10.1016/j.ebiom.2023.104851 |
work_keys_str_mv | AT guxiaoying probinglongcovidthroughaproteomiclensacomprehensivetwoyearlongitudinalcohortstudyofhospitalisedsurvivors AT wangsiyuan probinglongcovidthroughaproteomiclensacomprehensivetwoyearlongitudinalcohortstudyofhospitalisedsurvivors AT zhangwanying probinglongcovidthroughaproteomiclensacomprehensivetwoyearlongitudinalcohortstudyofhospitalisedsurvivors AT licaihong probinglongcovidthroughaproteomiclensacomprehensivetwoyearlongitudinalcohortstudyofhospitalisedsurvivors AT guoli probinglongcovidthroughaproteomiclensacomprehensivetwoyearlongitudinalcohortstudyofhospitalisedsurvivors AT wangzai probinglongcovidthroughaproteomiclensacomprehensivetwoyearlongitudinalcohortstudyofhospitalisedsurvivors AT lihaibo probinglongcovidthroughaproteomiclensacomprehensivetwoyearlongitudinalcohortstudyofhospitalisedsurvivors AT zhanghui probinglongcovidthroughaproteomiclensacomprehensivetwoyearlongitudinalcohortstudyofhospitalisedsurvivors AT zhouyuhan probinglongcovidthroughaproteomiclensacomprehensivetwoyearlongitudinalcohortstudyofhospitalisedsurvivors AT liangweijian probinglongcovidthroughaproteomiclensacomprehensivetwoyearlongitudinalcohortstudyofhospitalisedsurvivors AT lihui probinglongcovidthroughaproteomiclensacomprehensivetwoyearlongitudinalcohortstudyofhospitalisedsurvivors AT liuyan probinglongcovidthroughaproteomiclensacomprehensivetwoyearlongitudinalcohortstudyofhospitalisedsurvivors AT wangyeming probinglongcovidthroughaproteomiclensacomprehensivetwoyearlongitudinalcohortstudyofhospitalisedsurvivors AT huanglixue probinglongcovidthroughaproteomiclensacomprehensivetwoyearlongitudinalcohortstudyofhospitalisedsurvivors AT dongtao probinglongcovidthroughaproteomiclensacomprehensivetwoyearlongitudinalcohortstudyofhospitalisedsurvivors AT zhangdingyu probinglongcovidthroughaproteomiclensacomprehensivetwoyearlongitudinalcohortstudyofhospitalisedsurvivors AT wongcatherinecl probinglongcovidthroughaproteomiclensacomprehensivetwoyearlongitudinalcohortstudyofhospitalisedsurvivors AT caobin probinglongcovidthroughaproteomiclensacomprehensivetwoyearlongitudinalcohortstudyofhospitalisedsurvivors |