Cargando…
An improvement of the CNN-XGboost model for pneumonia disease classification
PURPOSE: X-ray images are viewed as a vital component in emergency diagnosis. They are often used by deep learning applications for disease prediction, especially for thoracic pathologies. Pneumonia, a fatal thoracic disease induced by bacteria or viruses, generates a pleural effusion where fluids a...
Autores principales: | Hedhoud, Yousra, Mekhaznia, Tahar, Amroune, Mohamed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Termedia Publishing House
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10660141/ https://www.ncbi.nlm.nih.gov/pubmed/38020497 http://dx.doi.org/10.5114/pjr.2023.132533 |
Ejemplares similares
-
A Novel Protein Subcellular Localization Method With CNN-XGBoost Model for Alzheimer's Disease
por: Pang, Long, et al.
Publicado: (2019) -
Classification and prediction of spinal disease based on the SMOTE-RFE-XGBoost model
por: Zhang, Biao, et al.
Publicado: (2023) -
CNN-XGBoost fusion-based affective state recognition using EEG spectrogram image analysis
por: Khan, Md. Sakib, et al.
Publicado: (2022) -
Automatic Multichannel Electrocardiogram Record Classification Using XGBoost Fusion Model
por: Ye, Xiaohong, et al.
Publicado: (2022) -
Prediction and Screening Model for Products Based on Fusion Regression and XGBoost Classification
por: Wu, Jiaju, et al.
Publicado: (2022)