Cargando…
Calculating shear viscosity with confined non-equilibrium molecular dynamics: a case study on hematite – PAO-2 lubricant
The behaviour of confined lubricants at the atomic scale as affected by the interactions at the surface–lubricant interface is relevant in a range of technological applications in areas such as the automotive industry. In this paper, by performing fully atomistic molecular dynamics, we investigate t...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10660148/ https://www.ncbi.nlm.nih.gov/pubmed/38019999 http://dx.doi.org/10.1039/d3ra06929j |
_version_ | 1785148388649467904 |
---|---|
author | Mathas, Dimitrios Sarpa, Davide Holweger, Walter Wolf, Marcus Bohnert, Christof Bakolas, Vasilios Procelewska, Joanna Franke, Joerg Rödel, Philipp Skylaris, Chris-Kriton |
author_facet | Mathas, Dimitrios Sarpa, Davide Holweger, Walter Wolf, Marcus Bohnert, Christof Bakolas, Vasilios Procelewska, Joanna Franke, Joerg Rödel, Philipp Skylaris, Chris-Kriton |
author_sort | Mathas, Dimitrios |
collection | PubMed |
description | The behaviour of confined lubricants at the atomic scale as affected by the interactions at the surface–lubricant interface is relevant in a range of technological applications in areas such as the automotive industry. In this paper, by performing fully atomistic molecular dynamics, we investigate the regime where the viscosity starts to deviate from the bulk behaviour, a topic of great practical and scientific relevance. The simulations consist of setting up a shear flow by confining the lubricant between iron oxide surfaces. By using confined Non-Equilibrium Molecular Dynamics (NEMD) simulations at a pressure range of 0.1–1.0 GPa at 100 °C, we demonstrate that the film thickness of the fluid affects the behaviour of viscosity. We find that by increasing the number of lubricant molecules, we approach the viscosity value of the bulk fluid derived from previously published NEMD simulations for the same system. These changes in viscosity occurred at film thicknesses ranging from 10.12 to 55.93 Å. The viscosity deviations at different pressures between the system with the greatest number of lubricant molecules and the bulk simulations varied from −16% to 41%. The choice of the utilized force field for treating the atomic interactions was also investigated. |
format | Online Article Text |
id | pubmed-10660148 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-106601482023-11-21 Calculating shear viscosity with confined non-equilibrium molecular dynamics: a case study on hematite – PAO-2 lubricant Mathas, Dimitrios Sarpa, Davide Holweger, Walter Wolf, Marcus Bohnert, Christof Bakolas, Vasilios Procelewska, Joanna Franke, Joerg Rödel, Philipp Skylaris, Chris-Kriton RSC Adv Chemistry The behaviour of confined lubricants at the atomic scale as affected by the interactions at the surface–lubricant interface is relevant in a range of technological applications in areas such as the automotive industry. In this paper, by performing fully atomistic molecular dynamics, we investigate the regime where the viscosity starts to deviate from the bulk behaviour, a topic of great practical and scientific relevance. The simulations consist of setting up a shear flow by confining the lubricant between iron oxide surfaces. By using confined Non-Equilibrium Molecular Dynamics (NEMD) simulations at a pressure range of 0.1–1.0 GPa at 100 °C, we demonstrate that the film thickness of the fluid affects the behaviour of viscosity. We find that by increasing the number of lubricant molecules, we approach the viscosity value of the bulk fluid derived from previously published NEMD simulations for the same system. These changes in viscosity occurred at film thicknesses ranging from 10.12 to 55.93 Å. The viscosity deviations at different pressures between the system with the greatest number of lubricant molecules and the bulk simulations varied from −16% to 41%. The choice of the utilized force field for treating the atomic interactions was also investigated. The Royal Society of Chemistry 2023-11-21 /pmc/articles/PMC10660148/ /pubmed/38019999 http://dx.doi.org/10.1039/d3ra06929j Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Mathas, Dimitrios Sarpa, Davide Holweger, Walter Wolf, Marcus Bohnert, Christof Bakolas, Vasilios Procelewska, Joanna Franke, Joerg Rödel, Philipp Skylaris, Chris-Kriton Calculating shear viscosity with confined non-equilibrium molecular dynamics: a case study on hematite – PAO-2 lubricant |
title | Calculating shear viscosity with confined non-equilibrium molecular dynamics: a case study on hematite – PAO-2 lubricant |
title_full | Calculating shear viscosity with confined non-equilibrium molecular dynamics: a case study on hematite – PAO-2 lubricant |
title_fullStr | Calculating shear viscosity with confined non-equilibrium molecular dynamics: a case study on hematite – PAO-2 lubricant |
title_full_unstemmed | Calculating shear viscosity with confined non-equilibrium molecular dynamics: a case study on hematite – PAO-2 lubricant |
title_short | Calculating shear viscosity with confined non-equilibrium molecular dynamics: a case study on hematite – PAO-2 lubricant |
title_sort | calculating shear viscosity with confined non-equilibrium molecular dynamics: a case study on hematite – pao-2 lubricant |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10660148/ https://www.ncbi.nlm.nih.gov/pubmed/38019999 http://dx.doi.org/10.1039/d3ra06929j |
work_keys_str_mv | AT mathasdimitrios calculatingshearviscositywithconfinednonequilibriummoleculardynamicsacasestudyonhematitepao2lubricant AT sarpadavide calculatingshearviscositywithconfinednonequilibriummoleculardynamicsacasestudyonhematitepao2lubricant AT holwegerwalter calculatingshearviscositywithconfinednonequilibriummoleculardynamicsacasestudyonhematitepao2lubricant AT wolfmarcus calculatingshearviscositywithconfinednonequilibriummoleculardynamicsacasestudyonhematitepao2lubricant AT bohnertchristof calculatingshearviscositywithconfinednonequilibriummoleculardynamicsacasestudyonhematitepao2lubricant AT bakolasvasilios calculatingshearviscositywithconfinednonequilibriummoleculardynamicsacasestudyonhematitepao2lubricant AT procelewskajoanna calculatingshearviscositywithconfinednonequilibriummoleculardynamicsacasestudyonhematitepao2lubricant AT frankejoerg calculatingshearviscositywithconfinednonequilibriummoleculardynamicsacasestudyonhematitepao2lubricant AT rodelphilipp calculatingshearviscositywithconfinednonequilibriummoleculardynamicsacasestudyonhematitepao2lubricant AT skylarischriskriton calculatingshearviscositywithconfinednonequilibriummoleculardynamicsacasestudyonhematitepao2lubricant |