Cargando…
Physician- and Patient-Elicited Barriers and Facilitators to Implementation of a Machine Learning–Based Screening Tool for Peripheral Arterial Disease: Preimplementation Study With Physician and Patient Stakeholders
BACKGROUND: Peripheral arterial disease (PAD) is underdiagnosed, partially due to a high prevalence of atypical symptoms and a lack of physician and patient awareness. Implementing clinical decision support tools powered by machine learning algorithms may help physicians identify high-risk patients...
Autores principales: | Ho, Vy, Brown Johnson, Cati, Ghanzouri, Ilies, Amal, Saeed, Asch, Steven, Ross, Elsie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10660241/ https://www.ncbi.nlm.nih.gov/pubmed/37930755 http://dx.doi.org/10.2196/44732 |
Ejemplares similares
-
Brainwriting Premortem: A Novel Focus Group Method to Engage Stakeholders and Identify Preimplementation Barriers
por: Gilmartin, Heather, et al.
Publicado: (2019) -
Use of Multi-Modal Data and Machine Learning to Improve Cardiovascular Disease Care
por: Amal, Saeed, et al.
Publicado: (2022) -
Engaging Frontline Physicians in Value Improvement: A Qualitative Evaluation of Physician-Directed Reinvestment
por: Vilendrer, Stacie, et al.
Publicado: (2022) -
Intensive Care Unit Physicians’ Perspectives on Artificial Intelligence–Based Clinical Decision Support Tools: Preimplementation Survey Study
por: van der Meijden, Siri L, et al.
Publicado: (2023) -
Staff Perceptions of Preimplementation Barriers and Facilitators to a Mobile Health Antiretroviral Therapy Adherence Counseling Intervention in South Africa: Qualitative Study
por: McCreesh-Toselli, Siobhan, et al.
Publicado: (2021)