Cargando…
Enzymatic digestibility of lignocellulosic wood biomass: Effect of enzyme treatment in supercritical carbon dioxide and biomass pretreatment
Energy and resource intensive mechanical and chemical pretreatment along with the use of hazardous chemicals are major bottlenecks in widespread lignocellulosic biomass utilization. Herein, the study investigated different pretreatment methods on spruce wood namely supercritical CO(2) (scCO(2)) pret...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10660486/ https://www.ncbi.nlm.nih.gov/pubmed/38027598 http://dx.doi.org/10.1016/j.heliyon.2023.e21811 |
_version_ | 1785137769752821760 |
---|---|
author | Kumar, Pawan Kermanshahi-pour, Azadeh Brar, Satinder Kaur Xu, Chunbao Charles He, Quan Sophia Evans, Sara Rainey, Jan K. |
author_facet | Kumar, Pawan Kermanshahi-pour, Azadeh Brar, Satinder Kaur Xu, Chunbao Charles He, Quan Sophia Evans, Sara Rainey, Jan K. |
author_sort | Kumar, Pawan |
collection | PubMed |
description | Energy and resource intensive mechanical and chemical pretreatment along with the use of hazardous chemicals are major bottlenecks in widespread lignocellulosic biomass utilization. Herein, the study investigated different pretreatment methods on spruce wood namely supercritical CO(2) (scCO(2)) pretreatment, ultrasound-assisted alkaline pretreatment, and acetosolv pulping-alkaline hydrogen peroxide bleaching, to enhance the enzymatic digestibility of wood using optimized enzyme cocktail. Also, the effect of scCO(2) pretreatment on enzyme cocktail was investigated after optimizing the concentration and temperature of cellulolytic enzymes. The impact of scCO(2) and ultrasound-assisted alkaline pretreatments of wood were insignificant for the enzymatic digestibility, and acetosolv pulping-alkaline hydrogen peroxide bleaching was the most effective pretreatment that showed the release of total reducing sugar yield (TRS) of ∼95.0 wt% of total hydrolyzable sugars (THS) in enzymatic hydrolysis. The optimized enzyme cocktail showed higher yield than individual enzymes with degree of synergism 1.34 among the enzymes, and scCO(2) pretreatment of cocktail for 0.5–1.0 h at 10.0–22.0 MPa and 38.0–54.0 °C had insignificant effect on the enzyme's primary and global secondary structure of cocktail and its activity. |
format | Online Article Text |
id | pubmed-10660486 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-106604862023-10-31 Enzymatic digestibility of lignocellulosic wood biomass: Effect of enzyme treatment in supercritical carbon dioxide and biomass pretreatment Kumar, Pawan Kermanshahi-pour, Azadeh Brar, Satinder Kaur Xu, Chunbao Charles He, Quan Sophia Evans, Sara Rainey, Jan K. Heliyon Research Article Energy and resource intensive mechanical and chemical pretreatment along with the use of hazardous chemicals are major bottlenecks in widespread lignocellulosic biomass utilization. Herein, the study investigated different pretreatment methods on spruce wood namely supercritical CO(2) (scCO(2)) pretreatment, ultrasound-assisted alkaline pretreatment, and acetosolv pulping-alkaline hydrogen peroxide bleaching, to enhance the enzymatic digestibility of wood using optimized enzyme cocktail. Also, the effect of scCO(2) pretreatment on enzyme cocktail was investigated after optimizing the concentration and temperature of cellulolytic enzymes. The impact of scCO(2) and ultrasound-assisted alkaline pretreatments of wood were insignificant for the enzymatic digestibility, and acetosolv pulping-alkaline hydrogen peroxide bleaching was the most effective pretreatment that showed the release of total reducing sugar yield (TRS) of ∼95.0 wt% of total hydrolyzable sugars (THS) in enzymatic hydrolysis. The optimized enzyme cocktail showed higher yield than individual enzymes with degree of synergism 1.34 among the enzymes, and scCO(2) pretreatment of cocktail for 0.5–1.0 h at 10.0–22.0 MPa and 38.0–54.0 °C had insignificant effect on the enzyme's primary and global secondary structure of cocktail and its activity. Elsevier 2023-10-31 /pmc/articles/PMC10660486/ /pubmed/38027598 http://dx.doi.org/10.1016/j.heliyon.2023.e21811 Text en © 2023 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Research Article Kumar, Pawan Kermanshahi-pour, Azadeh Brar, Satinder Kaur Xu, Chunbao Charles He, Quan Sophia Evans, Sara Rainey, Jan K. Enzymatic digestibility of lignocellulosic wood biomass: Effect of enzyme treatment in supercritical carbon dioxide and biomass pretreatment |
title | Enzymatic digestibility of lignocellulosic wood biomass: Effect of enzyme treatment in supercritical carbon dioxide and biomass pretreatment |
title_full | Enzymatic digestibility of lignocellulosic wood biomass: Effect of enzyme treatment in supercritical carbon dioxide and biomass pretreatment |
title_fullStr | Enzymatic digestibility of lignocellulosic wood biomass: Effect of enzyme treatment in supercritical carbon dioxide and biomass pretreatment |
title_full_unstemmed | Enzymatic digestibility of lignocellulosic wood biomass: Effect of enzyme treatment in supercritical carbon dioxide and biomass pretreatment |
title_short | Enzymatic digestibility of lignocellulosic wood biomass: Effect of enzyme treatment in supercritical carbon dioxide and biomass pretreatment |
title_sort | enzymatic digestibility of lignocellulosic wood biomass: effect of enzyme treatment in supercritical carbon dioxide and biomass pretreatment |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10660486/ https://www.ncbi.nlm.nih.gov/pubmed/38027598 http://dx.doi.org/10.1016/j.heliyon.2023.e21811 |
work_keys_str_mv | AT kumarpawan enzymaticdigestibilityoflignocellulosicwoodbiomasseffectofenzymetreatmentinsupercriticalcarbondioxideandbiomasspretreatment AT kermanshahipourazadeh enzymaticdigestibilityoflignocellulosicwoodbiomasseffectofenzymetreatmentinsupercriticalcarbondioxideandbiomasspretreatment AT brarsatinderkaur enzymaticdigestibilityoflignocellulosicwoodbiomasseffectofenzymetreatmentinsupercriticalcarbondioxideandbiomasspretreatment AT xuchunbaocharles enzymaticdigestibilityoflignocellulosicwoodbiomasseffectofenzymetreatmentinsupercriticalcarbondioxideandbiomasspretreatment AT hequansophia enzymaticdigestibilityoflignocellulosicwoodbiomasseffectofenzymetreatmentinsupercriticalcarbondioxideandbiomasspretreatment AT evanssara enzymaticdigestibilityoflignocellulosicwoodbiomasseffectofenzymetreatmentinsupercriticalcarbondioxideandbiomasspretreatment AT raineyjank enzymaticdigestibilityoflignocellulosicwoodbiomasseffectofenzymetreatmentinsupercriticalcarbondioxideandbiomasspretreatment |