Cargando…
Spatial differentiation characteristics of regional self-driving tourism flow: A case study of central Yunnan urban agglomeration
The aim of this study was investigate the spatial effects of A-class scenic spots and the spatial distribution of highway networks on the influence of self-driving tour behavioral patterns in China at the urban agglomeration scale, based on big data of road traffic during three holidays. A spatial a...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10660521/ https://www.ncbi.nlm.nih.gov/pubmed/38027797 http://dx.doi.org/10.1016/j.heliyon.2023.e21814 |
Sumario: | The aim of this study was investigate the spatial effects of A-class scenic spots and the spatial distribution of highway networks on the influence of self-driving tour behavioral patterns in China at the urban agglomeration scale, based on big data of road traffic during three holidays. A spatial analysis method and a geographically weighted regression model were used to analyze the spatial distribution differences and influencing factors of self-driving tourism flows in the central Yunnan urban agglomeration. The results showed that holiday self-driving tourism in the central Yunnan urban agglomeration presented a typical core-edge spatial pattern. The mean value of the spatial autocorrelation coefficient was 0.54, indicating significant spatial autocorrelation. The influence of tourism resources and traffic conditions on self-driving tourism flow showed a decreasing trend from the center of the high positive value to the periphery of the main urban area of Kunming. This study reveals the spatial differentiation characteristics of self-driving tourism flows in urban agglomerations and lays a theoretical foundation for understanding flow pattern. |
---|