Cargando…

Tracking of Systemic Lupus Erythematosus (SLE) Longitudinally Using Biosensor and Patient-Reported Data: A Report on the Fully Decentralized Mobile Study to Measure and Predict Lupus Disease Activity Using Digital Signals—The OASIS Study

(1) Objective: Systemic lupus erythematosus (SLE) is a complex disease involving immune dysregulation, episodic flares, and poor quality of life (QOL). For a decentralized digital study of SLE patients, machine learning was used to assess patient-reported outcomes (PROs), QOL, and biometric data for...

Descripción completa

Detalles Bibliográficos
Autores principales: Jupe, Eldon R., Lushington, Gerald H., Purushothaman, Mohan, Pautasso, Fabricio, Armstrong, Georg, Sorathia, Arif, Crawley, Jessica, Nadipelli, Vijay R., Rubin, Bernard, Newhardt, Ryan, Munroe, Melissa E., Adelman, Brett
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10660535/
https://www.ncbi.nlm.nih.gov/pubmed/37987479
http://dx.doi.org/10.3390/biotech12040062
_version_ 1785137779284377600
author Jupe, Eldon R.
Lushington, Gerald H.
Purushothaman, Mohan
Pautasso, Fabricio
Armstrong, Georg
Sorathia, Arif
Crawley, Jessica
Nadipelli, Vijay R.
Rubin, Bernard
Newhardt, Ryan
Munroe, Melissa E.
Adelman, Brett
author_facet Jupe, Eldon R.
Lushington, Gerald H.
Purushothaman, Mohan
Pautasso, Fabricio
Armstrong, Georg
Sorathia, Arif
Crawley, Jessica
Nadipelli, Vijay R.
Rubin, Bernard
Newhardt, Ryan
Munroe, Melissa E.
Adelman, Brett
author_sort Jupe, Eldon R.
collection PubMed
description (1) Objective: Systemic lupus erythematosus (SLE) is a complex disease involving immune dysregulation, episodic flares, and poor quality of life (QOL). For a decentralized digital study of SLE patients, machine learning was used to assess patient-reported outcomes (PROs), QOL, and biometric data for predicting possible disease flares. (2) Methods: Participants were recruited from the LupusCorner online community. Adults self-reporting an SLE diagnosis were consented and given a mobile application to record patient profile (PP), PRO, and QOL metrics, and enlisted participants received smartwatches for digital biometric monitoring. The resulting data were profiled using feature selection and classification algorithms. (3) Results: 550 participants completed digital surveys, 144 (26%) agreed to wear smartwatches, and medical records (MRs) were obtained for 68. Mining of PP, PRO, QOL, and biometric data yielded a 26-feature model for classifying participants according to MR-identified disease flare risk. ROC curves significantly distinguished true from false positives (ten-fold cross-validation: p < 0.00023; five-fold: p < 0.00022). A 25-feature Bayesian model enabled time-variant prediction of participant-reported possible flares (P(true) > 0.85, p < 0.001; P(nonflare) > 0.83, p < 0.0001). (4) Conclusions: Regular profiling of patient well-being and biometric activity may support proactive screening for circumstances warranting clinical assessment.
format Online
Article
Text
id pubmed-10660535
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-106605352023-11-09 Tracking of Systemic Lupus Erythematosus (SLE) Longitudinally Using Biosensor and Patient-Reported Data: A Report on the Fully Decentralized Mobile Study to Measure and Predict Lupus Disease Activity Using Digital Signals—The OASIS Study Jupe, Eldon R. Lushington, Gerald H. Purushothaman, Mohan Pautasso, Fabricio Armstrong, Georg Sorathia, Arif Crawley, Jessica Nadipelli, Vijay R. Rubin, Bernard Newhardt, Ryan Munroe, Melissa E. Adelman, Brett BioTech (Basel) Article (1) Objective: Systemic lupus erythematosus (SLE) is a complex disease involving immune dysregulation, episodic flares, and poor quality of life (QOL). For a decentralized digital study of SLE patients, machine learning was used to assess patient-reported outcomes (PROs), QOL, and biometric data for predicting possible disease flares. (2) Methods: Participants were recruited from the LupusCorner online community. Adults self-reporting an SLE diagnosis were consented and given a mobile application to record patient profile (PP), PRO, and QOL metrics, and enlisted participants received smartwatches for digital biometric monitoring. The resulting data were profiled using feature selection and classification algorithms. (3) Results: 550 participants completed digital surveys, 144 (26%) agreed to wear smartwatches, and medical records (MRs) were obtained for 68. Mining of PP, PRO, QOL, and biometric data yielded a 26-feature model for classifying participants according to MR-identified disease flare risk. ROC curves significantly distinguished true from false positives (ten-fold cross-validation: p < 0.00023; five-fold: p < 0.00022). A 25-feature Bayesian model enabled time-variant prediction of participant-reported possible flares (P(true) > 0.85, p < 0.001; P(nonflare) > 0.83, p < 0.0001). (4) Conclusions: Regular profiling of patient well-being and biometric activity may support proactive screening for circumstances warranting clinical assessment. MDPI 2023-11-09 /pmc/articles/PMC10660535/ /pubmed/37987479 http://dx.doi.org/10.3390/biotech12040062 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Jupe, Eldon R.
Lushington, Gerald H.
Purushothaman, Mohan
Pautasso, Fabricio
Armstrong, Georg
Sorathia, Arif
Crawley, Jessica
Nadipelli, Vijay R.
Rubin, Bernard
Newhardt, Ryan
Munroe, Melissa E.
Adelman, Brett
Tracking of Systemic Lupus Erythematosus (SLE) Longitudinally Using Biosensor and Patient-Reported Data: A Report on the Fully Decentralized Mobile Study to Measure and Predict Lupus Disease Activity Using Digital Signals—The OASIS Study
title Tracking of Systemic Lupus Erythematosus (SLE) Longitudinally Using Biosensor and Patient-Reported Data: A Report on the Fully Decentralized Mobile Study to Measure and Predict Lupus Disease Activity Using Digital Signals—The OASIS Study
title_full Tracking of Systemic Lupus Erythematosus (SLE) Longitudinally Using Biosensor and Patient-Reported Data: A Report on the Fully Decentralized Mobile Study to Measure and Predict Lupus Disease Activity Using Digital Signals—The OASIS Study
title_fullStr Tracking of Systemic Lupus Erythematosus (SLE) Longitudinally Using Biosensor and Patient-Reported Data: A Report on the Fully Decentralized Mobile Study to Measure and Predict Lupus Disease Activity Using Digital Signals—The OASIS Study
title_full_unstemmed Tracking of Systemic Lupus Erythematosus (SLE) Longitudinally Using Biosensor and Patient-Reported Data: A Report on the Fully Decentralized Mobile Study to Measure and Predict Lupus Disease Activity Using Digital Signals—The OASIS Study
title_short Tracking of Systemic Lupus Erythematosus (SLE) Longitudinally Using Biosensor and Patient-Reported Data: A Report on the Fully Decentralized Mobile Study to Measure and Predict Lupus Disease Activity Using Digital Signals—The OASIS Study
title_sort tracking of systemic lupus erythematosus (sle) longitudinally using biosensor and patient-reported data: a report on the fully decentralized mobile study to measure and predict lupus disease activity using digital signals—the oasis study
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10660535/
https://www.ncbi.nlm.nih.gov/pubmed/37987479
http://dx.doi.org/10.3390/biotech12040062
work_keys_str_mv AT jupeeldonr trackingofsystemiclupuserythematosusslelongitudinallyusingbiosensorandpatientreporteddataareportonthefullydecentralizedmobilestudytomeasureandpredictlupusdiseaseactivityusingdigitalsignalstheoasisstudy
AT lushingtongeraldh trackingofsystemiclupuserythematosusslelongitudinallyusingbiosensorandpatientreporteddataareportonthefullydecentralizedmobilestudytomeasureandpredictlupusdiseaseactivityusingdigitalsignalstheoasisstudy
AT purushothamanmohan trackingofsystemiclupuserythematosusslelongitudinallyusingbiosensorandpatientreporteddataareportonthefullydecentralizedmobilestudytomeasureandpredictlupusdiseaseactivityusingdigitalsignalstheoasisstudy
AT pautassofabricio trackingofsystemiclupuserythematosusslelongitudinallyusingbiosensorandpatientreporteddataareportonthefullydecentralizedmobilestudytomeasureandpredictlupusdiseaseactivityusingdigitalsignalstheoasisstudy
AT armstronggeorg trackingofsystemiclupuserythematosusslelongitudinallyusingbiosensorandpatientreporteddataareportonthefullydecentralizedmobilestudytomeasureandpredictlupusdiseaseactivityusingdigitalsignalstheoasisstudy
AT sorathiaarif trackingofsystemiclupuserythematosusslelongitudinallyusingbiosensorandpatientreporteddataareportonthefullydecentralizedmobilestudytomeasureandpredictlupusdiseaseactivityusingdigitalsignalstheoasisstudy
AT crawleyjessica trackingofsystemiclupuserythematosusslelongitudinallyusingbiosensorandpatientreporteddataareportonthefullydecentralizedmobilestudytomeasureandpredictlupusdiseaseactivityusingdigitalsignalstheoasisstudy
AT nadipellivijayr trackingofsystemiclupuserythematosusslelongitudinallyusingbiosensorandpatientreporteddataareportonthefullydecentralizedmobilestudytomeasureandpredictlupusdiseaseactivityusingdigitalsignalstheoasisstudy
AT rubinbernard trackingofsystemiclupuserythematosusslelongitudinallyusingbiosensorandpatientreporteddataareportonthefullydecentralizedmobilestudytomeasureandpredictlupusdiseaseactivityusingdigitalsignalstheoasisstudy
AT newhardtryan trackingofsystemiclupuserythematosusslelongitudinallyusingbiosensorandpatientreporteddataareportonthefullydecentralizedmobilestudytomeasureandpredictlupusdiseaseactivityusingdigitalsignalstheoasisstudy
AT munroemelissae trackingofsystemiclupuserythematosusslelongitudinallyusingbiosensorandpatientreporteddataareportonthefullydecentralizedmobilestudytomeasureandpredictlupusdiseaseactivityusingdigitalsignalstheoasisstudy
AT adelmanbrett trackingofsystemiclupuserythematosusslelongitudinallyusingbiosensorandpatientreporteddataareportonthefullydecentralizedmobilestudytomeasureandpredictlupusdiseaseactivityusingdigitalsignalstheoasisstudy