Cargando…
Tracking of Systemic Lupus Erythematosus (SLE) Longitudinally Using Biosensor and Patient-Reported Data: A Report on the Fully Decentralized Mobile Study to Measure and Predict Lupus Disease Activity Using Digital Signals—The OASIS Study
(1) Objective: Systemic lupus erythematosus (SLE) is a complex disease involving immune dysregulation, episodic flares, and poor quality of life (QOL). For a decentralized digital study of SLE patients, machine learning was used to assess patient-reported outcomes (PROs), QOL, and biometric data for...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10660535/ https://www.ncbi.nlm.nih.gov/pubmed/37987479 http://dx.doi.org/10.3390/biotech12040062 |
_version_ | 1785137779284377600 |
---|---|
author | Jupe, Eldon R. Lushington, Gerald H. Purushothaman, Mohan Pautasso, Fabricio Armstrong, Georg Sorathia, Arif Crawley, Jessica Nadipelli, Vijay R. Rubin, Bernard Newhardt, Ryan Munroe, Melissa E. Adelman, Brett |
author_facet | Jupe, Eldon R. Lushington, Gerald H. Purushothaman, Mohan Pautasso, Fabricio Armstrong, Georg Sorathia, Arif Crawley, Jessica Nadipelli, Vijay R. Rubin, Bernard Newhardt, Ryan Munroe, Melissa E. Adelman, Brett |
author_sort | Jupe, Eldon R. |
collection | PubMed |
description | (1) Objective: Systemic lupus erythematosus (SLE) is a complex disease involving immune dysregulation, episodic flares, and poor quality of life (QOL). For a decentralized digital study of SLE patients, machine learning was used to assess patient-reported outcomes (PROs), QOL, and biometric data for predicting possible disease flares. (2) Methods: Participants were recruited from the LupusCorner online community. Adults self-reporting an SLE diagnosis were consented and given a mobile application to record patient profile (PP), PRO, and QOL metrics, and enlisted participants received smartwatches for digital biometric monitoring. The resulting data were profiled using feature selection and classification algorithms. (3) Results: 550 participants completed digital surveys, 144 (26%) agreed to wear smartwatches, and medical records (MRs) were obtained for 68. Mining of PP, PRO, QOL, and biometric data yielded a 26-feature model for classifying participants according to MR-identified disease flare risk. ROC curves significantly distinguished true from false positives (ten-fold cross-validation: p < 0.00023; five-fold: p < 0.00022). A 25-feature Bayesian model enabled time-variant prediction of participant-reported possible flares (P(true) > 0.85, p < 0.001; P(nonflare) > 0.83, p < 0.0001). (4) Conclusions: Regular profiling of patient well-being and biometric activity may support proactive screening for circumstances warranting clinical assessment. |
format | Online Article Text |
id | pubmed-10660535 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-106605352023-11-09 Tracking of Systemic Lupus Erythematosus (SLE) Longitudinally Using Biosensor and Patient-Reported Data: A Report on the Fully Decentralized Mobile Study to Measure and Predict Lupus Disease Activity Using Digital Signals—The OASIS Study Jupe, Eldon R. Lushington, Gerald H. Purushothaman, Mohan Pautasso, Fabricio Armstrong, Georg Sorathia, Arif Crawley, Jessica Nadipelli, Vijay R. Rubin, Bernard Newhardt, Ryan Munroe, Melissa E. Adelman, Brett BioTech (Basel) Article (1) Objective: Systemic lupus erythematosus (SLE) is a complex disease involving immune dysregulation, episodic flares, and poor quality of life (QOL). For a decentralized digital study of SLE patients, machine learning was used to assess patient-reported outcomes (PROs), QOL, and biometric data for predicting possible disease flares. (2) Methods: Participants were recruited from the LupusCorner online community. Adults self-reporting an SLE diagnosis were consented and given a mobile application to record patient profile (PP), PRO, and QOL metrics, and enlisted participants received smartwatches for digital biometric monitoring. The resulting data were profiled using feature selection and classification algorithms. (3) Results: 550 participants completed digital surveys, 144 (26%) agreed to wear smartwatches, and medical records (MRs) were obtained for 68. Mining of PP, PRO, QOL, and biometric data yielded a 26-feature model for classifying participants according to MR-identified disease flare risk. ROC curves significantly distinguished true from false positives (ten-fold cross-validation: p < 0.00023; five-fold: p < 0.00022). A 25-feature Bayesian model enabled time-variant prediction of participant-reported possible flares (P(true) > 0.85, p < 0.001; P(nonflare) > 0.83, p < 0.0001). (4) Conclusions: Regular profiling of patient well-being and biometric activity may support proactive screening for circumstances warranting clinical assessment. MDPI 2023-11-09 /pmc/articles/PMC10660535/ /pubmed/37987479 http://dx.doi.org/10.3390/biotech12040062 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Jupe, Eldon R. Lushington, Gerald H. Purushothaman, Mohan Pautasso, Fabricio Armstrong, Georg Sorathia, Arif Crawley, Jessica Nadipelli, Vijay R. Rubin, Bernard Newhardt, Ryan Munroe, Melissa E. Adelman, Brett Tracking of Systemic Lupus Erythematosus (SLE) Longitudinally Using Biosensor and Patient-Reported Data: A Report on the Fully Decentralized Mobile Study to Measure and Predict Lupus Disease Activity Using Digital Signals—The OASIS Study |
title | Tracking of Systemic Lupus Erythematosus (SLE) Longitudinally Using Biosensor and Patient-Reported Data: A Report on the Fully Decentralized Mobile Study to Measure and Predict Lupus Disease Activity Using Digital Signals—The OASIS Study |
title_full | Tracking of Systemic Lupus Erythematosus (SLE) Longitudinally Using Biosensor and Patient-Reported Data: A Report on the Fully Decentralized Mobile Study to Measure and Predict Lupus Disease Activity Using Digital Signals—The OASIS Study |
title_fullStr | Tracking of Systemic Lupus Erythematosus (SLE) Longitudinally Using Biosensor and Patient-Reported Data: A Report on the Fully Decentralized Mobile Study to Measure and Predict Lupus Disease Activity Using Digital Signals—The OASIS Study |
title_full_unstemmed | Tracking of Systemic Lupus Erythematosus (SLE) Longitudinally Using Biosensor and Patient-Reported Data: A Report on the Fully Decentralized Mobile Study to Measure and Predict Lupus Disease Activity Using Digital Signals—The OASIS Study |
title_short | Tracking of Systemic Lupus Erythematosus (SLE) Longitudinally Using Biosensor and Patient-Reported Data: A Report on the Fully Decentralized Mobile Study to Measure and Predict Lupus Disease Activity Using Digital Signals—The OASIS Study |
title_sort | tracking of systemic lupus erythematosus (sle) longitudinally using biosensor and patient-reported data: a report on the fully decentralized mobile study to measure and predict lupus disease activity using digital signals—the oasis study |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10660535/ https://www.ncbi.nlm.nih.gov/pubmed/37987479 http://dx.doi.org/10.3390/biotech12040062 |
work_keys_str_mv | AT jupeeldonr trackingofsystemiclupuserythematosusslelongitudinallyusingbiosensorandpatientreporteddataareportonthefullydecentralizedmobilestudytomeasureandpredictlupusdiseaseactivityusingdigitalsignalstheoasisstudy AT lushingtongeraldh trackingofsystemiclupuserythematosusslelongitudinallyusingbiosensorandpatientreporteddataareportonthefullydecentralizedmobilestudytomeasureandpredictlupusdiseaseactivityusingdigitalsignalstheoasisstudy AT purushothamanmohan trackingofsystemiclupuserythematosusslelongitudinallyusingbiosensorandpatientreporteddataareportonthefullydecentralizedmobilestudytomeasureandpredictlupusdiseaseactivityusingdigitalsignalstheoasisstudy AT pautassofabricio trackingofsystemiclupuserythematosusslelongitudinallyusingbiosensorandpatientreporteddataareportonthefullydecentralizedmobilestudytomeasureandpredictlupusdiseaseactivityusingdigitalsignalstheoasisstudy AT armstronggeorg trackingofsystemiclupuserythematosusslelongitudinallyusingbiosensorandpatientreporteddataareportonthefullydecentralizedmobilestudytomeasureandpredictlupusdiseaseactivityusingdigitalsignalstheoasisstudy AT sorathiaarif trackingofsystemiclupuserythematosusslelongitudinallyusingbiosensorandpatientreporteddataareportonthefullydecentralizedmobilestudytomeasureandpredictlupusdiseaseactivityusingdigitalsignalstheoasisstudy AT crawleyjessica trackingofsystemiclupuserythematosusslelongitudinallyusingbiosensorandpatientreporteddataareportonthefullydecentralizedmobilestudytomeasureandpredictlupusdiseaseactivityusingdigitalsignalstheoasisstudy AT nadipellivijayr trackingofsystemiclupuserythematosusslelongitudinallyusingbiosensorandpatientreporteddataareportonthefullydecentralizedmobilestudytomeasureandpredictlupusdiseaseactivityusingdigitalsignalstheoasisstudy AT rubinbernard trackingofsystemiclupuserythematosusslelongitudinallyusingbiosensorandpatientreporteddataareportonthefullydecentralizedmobilestudytomeasureandpredictlupusdiseaseactivityusingdigitalsignalstheoasisstudy AT newhardtryan trackingofsystemiclupuserythematosusslelongitudinallyusingbiosensorandpatientreporteddataareportonthefullydecentralizedmobilestudytomeasureandpredictlupusdiseaseactivityusingdigitalsignalstheoasisstudy AT munroemelissae trackingofsystemiclupuserythematosusslelongitudinallyusingbiosensorandpatientreporteddataareportonthefullydecentralizedmobilestudytomeasureandpredictlupusdiseaseactivityusingdigitalsignalstheoasisstudy AT adelmanbrett trackingofsystemiclupuserythematosusslelongitudinallyusingbiosensorandpatientreporteddataareportonthefullydecentralizedmobilestudytomeasureandpredictlupusdiseaseactivityusingdigitalsignalstheoasisstudy |