Cargando…
Improving the Robustness of Variable Selection and Predictive Performance of Regularized Generalized Linear Models and Cox Proportional Hazard Models
High-dimensional data applications often entail the use of various statistical and machine-learning algorithms to identify an optimal signature based on biomarkers and other patient characteristics that predicts the desired clinical outcome in biomedical research. Both the composition and predictive...
Autores principales: | Hong, Feng, Tian, Lu, Devanarayan, Viswanath |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10660556/ https://www.ncbi.nlm.nih.gov/pubmed/37990696 http://dx.doi.org/10.3390/math11030557 |
Ejemplares similares
-
Novel Harmonic Regularization Approach for Variable Selection in Cox's Proportional Hazards Model
por: Chu, Ge-Jin, et al.
Publicado: (2014) -
Detecting prognostic biomarkers of breast cancer by regularized Cox proportional hazards models
por: Li, Lingyu, et al.
Publicado: (2021) -
Quasi-linear Cox proportional hazards model with cross- L(1) penalty
por: Omae, Katsuhiro, et al.
Publicado: (2020) -
Tests for the proportional hazards assumption in the Cox model
por: Reiersølmoen, L, et al.
Publicado: (2001) -
On Cox proportional hazards model performance under different sampling schemes
por: Samawi, Hani, et al.
Publicado: (2023)