Cargando…

Comparison of Light-Sheet Fluorescence Microscopy and Fast-Confocal Microscopy for Three-Dimensional Imaging of Cleared Mouse Brain

Whole-brain imaging is important for understanding brain functions through deciphering tissue structures, neuronal circuits, and single-neuron tracing. Thus, many clearing methods have been developed to acquire whole-brain images or images of three-dimensional thick tissues. However, there are sever...

Descripción completa

Detalles Bibliográficos
Autores principales: Ryu, Youngjae, Kim, Yoonju, Park, Sang-Joon, Kim, Sung Rae, Kim, Hyung-Jun, Ha, Chang Man
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10660704/
https://www.ncbi.nlm.nih.gov/pubmed/37987355
http://dx.doi.org/10.3390/mps6060108
_version_ 1785137814128558080
author Ryu, Youngjae
Kim, Yoonju
Park, Sang-Joon
Kim, Sung Rae
Kim, Hyung-Jun
Ha, Chang Man
author_facet Ryu, Youngjae
Kim, Yoonju
Park, Sang-Joon
Kim, Sung Rae
Kim, Hyung-Jun
Ha, Chang Man
author_sort Ryu, Youngjae
collection PubMed
description Whole-brain imaging is important for understanding brain functions through deciphering tissue structures, neuronal circuits, and single-neuron tracing. Thus, many clearing methods have been developed to acquire whole-brain images or images of three-dimensional thick tissues. However, there are several limitations to imaging whole-brain volumes, including long image acquisition times, large volumes of data, and a long post-image process. Based on these limitations, many researchers are unsure about which light microscopy is most suitable for imaging thick tissues. Here, we compared fast-confocal microscopy with light-sheet fluorescence microscopy for whole-brain three-dimensional imaging, which can acquire images the fastest. To compare the two types of microscopies for large-volume imaging, we performed tissue clearing of a whole mouse brain, and changed the sample chamber and low- magnification objective lens and modified the sample holder of a light-sheet fluorescence microscope. We found out that light-sheet fluorescence microscopy using a 2.5× objective lens possesses several advantages, including saving time, large-volume image acquisitions, and high Z-resolution, over fast-confocal microscopy, which uses a 4× objective lens. Therefore, we suggest that light-sheet fluorescence microscopy is suitable for whole mouse brain imaging and for obtaining high-resolution three-dimensional images.
format Online
Article
Text
id pubmed-10660704
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-106607042023-11-10 Comparison of Light-Sheet Fluorescence Microscopy and Fast-Confocal Microscopy for Three-Dimensional Imaging of Cleared Mouse Brain Ryu, Youngjae Kim, Yoonju Park, Sang-Joon Kim, Sung Rae Kim, Hyung-Jun Ha, Chang Man Methods Protoc Brief Report Whole-brain imaging is important for understanding brain functions through deciphering tissue structures, neuronal circuits, and single-neuron tracing. Thus, many clearing methods have been developed to acquire whole-brain images or images of three-dimensional thick tissues. However, there are several limitations to imaging whole-brain volumes, including long image acquisition times, large volumes of data, and a long post-image process. Based on these limitations, many researchers are unsure about which light microscopy is most suitable for imaging thick tissues. Here, we compared fast-confocal microscopy with light-sheet fluorescence microscopy for whole-brain three-dimensional imaging, which can acquire images the fastest. To compare the two types of microscopies for large-volume imaging, we performed tissue clearing of a whole mouse brain, and changed the sample chamber and low- magnification objective lens and modified the sample holder of a light-sheet fluorescence microscope. We found out that light-sheet fluorescence microscopy using a 2.5× objective lens possesses several advantages, including saving time, large-volume image acquisitions, and high Z-resolution, over fast-confocal microscopy, which uses a 4× objective lens. Therefore, we suggest that light-sheet fluorescence microscopy is suitable for whole mouse brain imaging and for obtaining high-resolution three-dimensional images. MDPI 2023-11-10 /pmc/articles/PMC10660704/ /pubmed/37987355 http://dx.doi.org/10.3390/mps6060108 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Brief Report
Ryu, Youngjae
Kim, Yoonju
Park, Sang-Joon
Kim, Sung Rae
Kim, Hyung-Jun
Ha, Chang Man
Comparison of Light-Sheet Fluorescence Microscopy and Fast-Confocal Microscopy for Three-Dimensional Imaging of Cleared Mouse Brain
title Comparison of Light-Sheet Fluorescence Microscopy and Fast-Confocal Microscopy for Three-Dimensional Imaging of Cleared Mouse Brain
title_full Comparison of Light-Sheet Fluorescence Microscopy and Fast-Confocal Microscopy for Three-Dimensional Imaging of Cleared Mouse Brain
title_fullStr Comparison of Light-Sheet Fluorescence Microscopy and Fast-Confocal Microscopy for Three-Dimensional Imaging of Cleared Mouse Brain
title_full_unstemmed Comparison of Light-Sheet Fluorescence Microscopy and Fast-Confocal Microscopy for Three-Dimensional Imaging of Cleared Mouse Brain
title_short Comparison of Light-Sheet Fluorescence Microscopy and Fast-Confocal Microscopy for Three-Dimensional Imaging of Cleared Mouse Brain
title_sort comparison of light-sheet fluorescence microscopy and fast-confocal microscopy for three-dimensional imaging of cleared mouse brain
topic Brief Report
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10660704/
https://www.ncbi.nlm.nih.gov/pubmed/37987355
http://dx.doi.org/10.3390/mps6060108
work_keys_str_mv AT ryuyoungjae comparisonoflightsheetfluorescencemicroscopyandfastconfocalmicroscopyforthreedimensionalimagingofclearedmousebrain
AT kimyoonju comparisonoflightsheetfluorescencemicroscopyandfastconfocalmicroscopyforthreedimensionalimagingofclearedmousebrain
AT parksangjoon comparisonoflightsheetfluorescencemicroscopyandfastconfocalmicroscopyforthreedimensionalimagingofclearedmousebrain
AT kimsungrae comparisonoflightsheetfluorescencemicroscopyandfastconfocalmicroscopyforthreedimensionalimagingofclearedmousebrain
AT kimhyungjun comparisonoflightsheetfluorescencemicroscopyandfastconfocalmicroscopyforthreedimensionalimagingofclearedmousebrain
AT hachangman comparisonoflightsheetfluorescencemicroscopyandfastconfocalmicroscopyforthreedimensionalimagingofclearedmousebrain