Cargando…
Developing and externally validating a machine learning risk prediction model for 30-day mortality after stroke using national stroke registers in the UK and Sweden
OBJECTIVES: We aimed to develop and externally validate a generalisable risk prediction model for 30-day stroke mortality suitable for supporting quality improvement analytics in stroke care using large nationwide stroke registers in the UK and Sweden. DESIGN: Registry-based cohort study. SETTING: S...
Autores principales: | Wang, Wenjuan, Otieno, Josline A, Eriksson, Marie, Wolfe, Charles D, Curcin, Vasa, Bray, Benjamin D |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10660948/ https://www.ncbi.nlm.nih.gov/pubmed/37968001 http://dx.doi.org/10.1136/bmjopen-2022-069811 |
Ejemplares similares
-
Risk prediction of 30-day mortality after stroke using machine learning: a nationwide registry-based cohort study
por: Wang, Wenjuan, et al.
Publicado: (2022) -
Correction: Risk prediction of 30-day mortality after stroke using machine learning: a nationwide registry-based cohort study
por: Wang, Wenjuan, et al.
Publicado: (2022) -
Machine Learning-Enabled 30-Day Readmission Model for Stroke Patients
por: Darabi, Negar, et al.
Publicado: (2021) -
A systematic review of machine learning models for predicting outcomes of stroke with structured data
por: Wang, Wenjuan, et al.
Publicado: (2020) -
A Prospective Stroke Register in Sierra Leone: Demographics, Stroke Type, Stroke Care and Hospital Outcomes
por: Youkee, Daniel, et al.
Publicado: (2021)