Cargando…
Diagnosis of Alzheimer’s disease via resting-state EEG: integration of spectrum, complexity, and synchronization signal features
BACKGROUND: Alzheimer’s disease (AD) is the most common neurogenerative disorder, making up 70% of total dementia cases with a prevalence of more than 55 million people. Electroencephalogram (EEG) has become a suitable, accurate, and highly sensitive biomarker for the identification and diagnosis of...
Autores principales: | Zheng, Xiaowei, Wang, Bozhi, Liu, Hao, Wu, Wencan, Sun, Jiamin, Fang, Wei, Jiang, Rundong, Hu, Yajie, Jin, Cheng, Wei, Xin, Chen, Steve Shyh-Ching |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10661409/ https://www.ncbi.nlm.nih.gov/pubmed/38020761 http://dx.doi.org/10.3389/fnagi.2023.1288295 |
Ejemplares similares
-
Brain disorder prediction with dynamic multivariate spatio-temporal features: Application to Alzheimer’s disease and autism spectrum disorder
por: Qiao, Jianping, et al.
Publicado: (2022) -
Predicting age from resting-state scalp EEG signals with deep convolutional neural networks on TD-brain dataset
por: Khayretdinova, Mariam, et al.
Publicado: (2022) -
A novel framework of MOPSO-GDM in recognition of Alzheimer's EEG-based functional network
por: Wang, Ruofan, et al.
Publicado: (2023) -
Editorial: Neuroimaging Biomarkers and Cognition in Alzheimer's Disease Spectrum
por: Chen, Jiu, et al.
Publicado: (2022) -
Radiomic Features of the Hippocampus for Diagnosing Early-Onset and Late-Onset Alzheimer’s Disease
por: Du, Yang, et al.
Publicado: (2022)