Cargando…
Global flood extent segmentation in optical satellite images
Floods are among the most destructive extreme events that exist, being the main cause of people affected by natural disasters. In the near future, estimated flood intensity and frequency are projected to increase. In this context, automatic and accurate satellite-derived flood maps are key for fast...
Autores principales: | Portalés-Julià, Enrique, Mateo-García, Gonzalo, Purcell, Cormac, Gómez-Chova, Luis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10661555/ https://www.ncbi.nlm.nih.gov/pubmed/37985732 http://dx.doi.org/10.1038/s41598-023-47595-7 |
Ejemplares similares
-
Towards global flood mapping onboard low cost satellites with machine learning
por: Mateo-Garcia, Gonzalo, et al.
Publicado: (2021) -
Semantic segmentation of methane plumes with hyperspectral machine learning models
por: Růžička, Vít, et al.
Publicado: (2023) -
Satellites reveal hotspots of global river extent change
por: Wu, Qianhan, et al.
Publicado: (2023) -
Author Correction: Satellites reveal hotspots of global river extent change
por: Wu, Qianhan, et al.
Publicado: (2023) -
Satellites can reveal global extent of forced labor in the world’s fishing fleet
por: McDonald, Gavin G., et al.
Publicado: (2021)