Cargando…
Driving electrochemical reactions at the microscale using CMOS microelectrode arrays
Precise control of pH values at electrode interfaces enables the systematic investigation of pH-dependent processes by electrochemical means. In this work, we employed high-density complementary metal-oxide-semiconductor (CMOS) microelectrode arrays (MEAs) as miniaturized systems to induce and confi...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10661664/ https://www.ncbi.nlm.nih.gov/pubmed/37916299 http://dx.doi.org/10.1039/d3lc00630a |
_version_ | 1785138026836393984 |
---|---|
author | Duru, Jens Rüfenacht, Arielle Löhle, Josephine Pozzi, Marcello Forró, Csaba Ledermann, Linus Bernardi, Aeneas Matter, Michael Renia, André Simona, Benjamin Tringides, Christina M. Bernhard, Stéphane Ihle, Stephan J. Hengsteler, Julian Maurer, Benedikt Zhang, Xinyu Nakatsuka, Nako |
author_facet | Duru, Jens Rüfenacht, Arielle Löhle, Josephine Pozzi, Marcello Forró, Csaba Ledermann, Linus Bernardi, Aeneas Matter, Michael Renia, André Simona, Benjamin Tringides, Christina M. Bernhard, Stéphane Ihle, Stephan J. Hengsteler, Julian Maurer, Benedikt Zhang, Xinyu Nakatsuka, Nako |
author_sort | Duru, Jens |
collection | PubMed |
description | Precise control of pH values at electrode interfaces enables the systematic investigation of pH-dependent processes by electrochemical means. In this work, we employed high-density complementary metal-oxide-semiconductor (CMOS) microelectrode arrays (MEAs) as miniaturized systems to induce and confine electrochemical reactions in areas corresponding to the pitch of single electrodes (17.5 μm). First, we present a strategy for generating localized pH patterns on the surface of the CMOS MEA with unprecedented spatial resolution. Leveraging the versatile routing capabilities of the switch matrix beneath the CMOS MEA, we created arbitrary combinations of anodic and cathodic electrodes and hence pH patterns. Moreover, we utilized the system to produce polymeric surface patterns by additive and subtractive methods. For additive patterning, we controlled the in situ formation of polydopamine at the microelectrode surface through oxidation of free dopamine above a threshold pH > 8.5. For subtractive patterning, we removed cell-adhesive poly-l-lysine from the electrode surface and backfilled the voids with antifouling polymers. Such polymers were chosen to provide a proof-of-concept application of controlling neuronal growth via electrochemically-induced patterns on the CMOS MEA surface. Importantly, our platform is compatible with commercially available high-density MEAs and requires no custom equipment, rendering the findings generalizable and accessible. |
format | Online Article Text |
id | pubmed-10661664 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-106616642023-10-31 Driving electrochemical reactions at the microscale using CMOS microelectrode arrays Duru, Jens Rüfenacht, Arielle Löhle, Josephine Pozzi, Marcello Forró, Csaba Ledermann, Linus Bernardi, Aeneas Matter, Michael Renia, André Simona, Benjamin Tringides, Christina M. Bernhard, Stéphane Ihle, Stephan J. Hengsteler, Julian Maurer, Benedikt Zhang, Xinyu Nakatsuka, Nako Lab Chip Chemistry Precise control of pH values at electrode interfaces enables the systematic investigation of pH-dependent processes by electrochemical means. In this work, we employed high-density complementary metal-oxide-semiconductor (CMOS) microelectrode arrays (MEAs) as miniaturized systems to induce and confine electrochemical reactions in areas corresponding to the pitch of single electrodes (17.5 μm). First, we present a strategy for generating localized pH patterns on the surface of the CMOS MEA with unprecedented spatial resolution. Leveraging the versatile routing capabilities of the switch matrix beneath the CMOS MEA, we created arbitrary combinations of anodic and cathodic electrodes and hence pH patterns. Moreover, we utilized the system to produce polymeric surface patterns by additive and subtractive methods. For additive patterning, we controlled the in situ formation of polydopamine at the microelectrode surface through oxidation of free dopamine above a threshold pH > 8.5. For subtractive patterning, we removed cell-adhesive poly-l-lysine from the electrode surface and backfilled the voids with antifouling polymers. Such polymers were chosen to provide a proof-of-concept application of controlling neuronal growth via electrochemically-induced patterns on the CMOS MEA surface. Importantly, our platform is compatible with commercially available high-density MEAs and requires no custom equipment, rendering the findings generalizable and accessible. The Royal Society of Chemistry 2023-10-31 /pmc/articles/PMC10661664/ /pubmed/37916299 http://dx.doi.org/10.1039/d3lc00630a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Duru, Jens Rüfenacht, Arielle Löhle, Josephine Pozzi, Marcello Forró, Csaba Ledermann, Linus Bernardi, Aeneas Matter, Michael Renia, André Simona, Benjamin Tringides, Christina M. Bernhard, Stéphane Ihle, Stephan J. Hengsteler, Julian Maurer, Benedikt Zhang, Xinyu Nakatsuka, Nako Driving electrochemical reactions at the microscale using CMOS microelectrode arrays |
title | Driving electrochemical reactions at the microscale using CMOS microelectrode arrays |
title_full | Driving electrochemical reactions at the microscale using CMOS microelectrode arrays |
title_fullStr | Driving electrochemical reactions at the microscale using CMOS microelectrode arrays |
title_full_unstemmed | Driving electrochemical reactions at the microscale using CMOS microelectrode arrays |
title_short | Driving electrochemical reactions at the microscale using CMOS microelectrode arrays |
title_sort | driving electrochemical reactions at the microscale using cmos microelectrode arrays |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10661664/ https://www.ncbi.nlm.nih.gov/pubmed/37916299 http://dx.doi.org/10.1039/d3lc00630a |
work_keys_str_mv | AT durujens drivingelectrochemicalreactionsatthemicroscaleusingcmosmicroelectrodearrays AT rufenachtarielle drivingelectrochemicalreactionsatthemicroscaleusingcmosmicroelectrodearrays AT lohlejosephine drivingelectrochemicalreactionsatthemicroscaleusingcmosmicroelectrodearrays AT pozzimarcello drivingelectrochemicalreactionsatthemicroscaleusingcmosmicroelectrodearrays AT forrocsaba drivingelectrochemicalreactionsatthemicroscaleusingcmosmicroelectrodearrays AT ledermannlinus drivingelectrochemicalreactionsatthemicroscaleusingcmosmicroelectrodearrays AT bernardiaeneas drivingelectrochemicalreactionsatthemicroscaleusingcmosmicroelectrodearrays AT mattermichael drivingelectrochemicalreactionsatthemicroscaleusingcmosmicroelectrodearrays AT reniaandre drivingelectrochemicalreactionsatthemicroscaleusingcmosmicroelectrodearrays AT simonabenjamin drivingelectrochemicalreactionsatthemicroscaleusingcmosmicroelectrodearrays AT tringideschristinam drivingelectrochemicalreactionsatthemicroscaleusingcmosmicroelectrodearrays AT bernhardstephane drivingelectrochemicalreactionsatthemicroscaleusingcmosmicroelectrodearrays AT ihlestephanj drivingelectrochemicalreactionsatthemicroscaleusingcmosmicroelectrodearrays AT hengstelerjulian drivingelectrochemicalreactionsatthemicroscaleusingcmosmicroelectrodearrays AT maurerbenedikt drivingelectrochemicalreactionsatthemicroscaleusingcmosmicroelectrodearrays AT zhangxinyu drivingelectrochemicalreactionsatthemicroscaleusingcmosmicroelectrodearrays AT nakatsukanako drivingelectrochemicalreactionsatthemicroscaleusingcmosmicroelectrodearrays |