Cargando…

Driving electrochemical reactions at the microscale using CMOS microelectrode arrays

Precise control of pH values at electrode interfaces enables the systematic investigation of pH-dependent processes by electrochemical means. In this work, we employed high-density complementary metal-oxide-semiconductor (CMOS) microelectrode arrays (MEAs) as miniaturized systems to induce and confi...

Descripción completa

Detalles Bibliográficos
Autores principales: Duru, Jens, Rüfenacht, Arielle, Löhle, Josephine, Pozzi, Marcello, Forró, Csaba, Ledermann, Linus, Bernardi, Aeneas, Matter, Michael, Renia, André, Simona, Benjamin, Tringides, Christina M., Bernhard, Stéphane, Ihle, Stephan J., Hengsteler, Julian, Maurer, Benedikt, Zhang, Xinyu, Nakatsuka, Nako
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10661664/
https://www.ncbi.nlm.nih.gov/pubmed/37916299
http://dx.doi.org/10.1039/d3lc00630a
_version_ 1785138026836393984
author Duru, Jens
Rüfenacht, Arielle
Löhle, Josephine
Pozzi, Marcello
Forró, Csaba
Ledermann, Linus
Bernardi, Aeneas
Matter, Michael
Renia, André
Simona, Benjamin
Tringides, Christina M.
Bernhard, Stéphane
Ihle, Stephan J.
Hengsteler, Julian
Maurer, Benedikt
Zhang, Xinyu
Nakatsuka, Nako
author_facet Duru, Jens
Rüfenacht, Arielle
Löhle, Josephine
Pozzi, Marcello
Forró, Csaba
Ledermann, Linus
Bernardi, Aeneas
Matter, Michael
Renia, André
Simona, Benjamin
Tringides, Christina M.
Bernhard, Stéphane
Ihle, Stephan J.
Hengsteler, Julian
Maurer, Benedikt
Zhang, Xinyu
Nakatsuka, Nako
author_sort Duru, Jens
collection PubMed
description Precise control of pH values at electrode interfaces enables the systematic investigation of pH-dependent processes by electrochemical means. In this work, we employed high-density complementary metal-oxide-semiconductor (CMOS) microelectrode arrays (MEAs) as miniaturized systems to induce and confine electrochemical reactions in areas corresponding to the pitch of single electrodes (17.5 μm). First, we present a strategy for generating localized pH patterns on the surface of the CMOS MEA with unprecedented spatial resolution. Leveraging the versatile routing capabilities of the switch matrix beneath the CMOS MEA, we created arbitrary combinations of anodic and cathodic electrodes and hence pH patterns. Moreover, we utilized the system to produce polymeric surface patterns by additive and subtractive methods. For additive patterning, we controlled the in situ formation of polydopamine at the microelectrode surface through oxidation of free dopamine above a threshold pH > 8.5. For subtractive patterning, we removed cell-adhesive poly-l-lysine from the electrode surface and backfilled the voids with antifouling polymers. Such polymers were chosen to provide a proof-of-concept application of controlling neuronal growth via electrochemically-induced patterns on the CMOS MEA surface. Importantly, our platform is compatible with commercially available high-density MEAs and requires no custom equipment, rendering the findings generalizable and accessible.
format Online
Article
Text
id pubmed-10661664
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-106616642023-10-31 Driving electrochemical reactions at the microscale using CMOS microelectrode arrays Duru, Jens Rüfenacht, Arielle Löhle, Josephine Pozzi, Marcello Forró, Csaba Ledermann, Linus Bernardi, Aeneas Matter, Michael Renia, André Simona, Benjamin Tringides, Christina M. Bernhard, Stéphane Ihle, Stephan J. Hengsteler, Julian Maurer, Benedikt Zhang, Xinyu Nakatsuka, Nako Lab Chip Chemistry Precise control of pH values at electrode interfaces enables the systematic investigation of pH-dependent processes by electrochemical means. In this work, we employed high-density complementary metal-oxide-semiconductor (CMOS) microelectrode arrays (MEAs) as miniaturized systems to induce and confine electrochemical reactions in areas corresponding to the pitch of single electrodes (17.5 μm). First, we present a strategy for generating localized pH patterns on the surface of the CMOS MEA with unprecedented spatial resolution. Leveraging the versatile routing capabilities of the switch matrix beneath the CMOS MEA, we created arbitrary combinations of anodic and cathodic electrodes and hence pH patterns. Moreover, we utilized the system to produce polymeric surface patterns by additive and subtractive methods. For additive patterning, we controlled the in situ formation of polydopamine at the microelectrode surface through oxidation of free dopamine above a threshold pH > 8.5. For subtractive patterning, we removed cell-adhesive poly-l-lysine from the electrode surface and backfilled the voids with antifouling polymers. Such polymers were chosen to provide a proof-of-concept application of controlling neuronal growth via electrochemically-induced patterns on the CMOS MEA surface. Importantly, our platform is compatible with commercially available high-density MEAs and requires no custom equipment, rendering the findings generalizable and accessible. The Royal Society of Chemistry 2023-10-31 /pmc/articles/PMC10661664/ /pubmed/37916299 http://dx.doi.org/10.1039/d3lc00630a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/
spellingShingle Chemistry
Duru, Jens
Rüfenacht, Arielle
Löhle, Josephine
Pozzi, Marcello
Forró, Csaba
Ledermann, Linus
Bernardi, Aeneas
Matter, Michael
Renia, André
Simona, Benjamin
Tringides, Christina M.
Bernhard, Stéphane
Ihle, Stephan J.
Hengsteler, Julian
Maurer, Benedikt
Zhang, Xinyu
Nakatsuka, Nako
Driving electrochemical reactions at the microscale using CMOS microelectrode arrays
title Driving electrochemical reactions at the microscale using CMOS microelectrode arrays
title_full Driving electrochemical reactions at the microscale using CMOS microelectrode arrays
title_fullStr Driving electrochemical reactions at the microscale using CMOS microelectrode arrays
title_full_unstemmed Driving electrochemical reactions at the microscale using CMOS microelectrode arrays
title_short Driving electrochemical reactions at the microscale using CMOS microelectrode arrays
title_sort driving electrochemical reactions at the microscale using cmos microelectrode arrays
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10661664/
https://www.ncbi.nlm.nih.gov/pubmed/37916299
http://dx.doi.org/10.1039/d3lc00630a
work_keys_str_mv AT durujens drivingelectrochemicalreactionsatthemicroscaleusingcmosmicroelectrodearrays
AT rufenachtarielle drivingelectrochemicalreactionsatthemicroscaleusingcmosmicroelectrodearrays
AT lohlejosephine drivingelectrochemicalreactionsatthemicroscaleusingcmosmicroelectrodearrays
AT pozzimarcello drivingelectrochemicalreactionsatthemicroscaleusingcmosmicroelectrodearrays
AT forrocsaba drivingelectrochemicalreactionsatthemicroscaleusingcmosmicroelectrodearrays
AT ledermannlinus drivingelectrochemicalreactionsatthemicroscaleusingcmosmicroelectrodearrays
AT bernardiaeneas drivingelectrochemicalreactionsatthemicroscaleusingcmosmicroelectrodearrays
AT mattermichael drivingelectrochemicalreactionsatthemicroscaleusingcmosmicroelectrodearrays
AT reniaandre drivingelectrochemicalreactionsatthemicroscaleusingcmosmicroelectrodearrays
AT simonabenjamin drivingelectrochemicalreactionsatthemicroscaleusingcmosmicroelectrodearrays
AT tringideschristinam drivingelectrochemicalreactionsatthemicroscaleusingcmosmicroelectrodearrays
AT bernhardstephane drivingelectrochemicalreactionsatthemicroscaleusingcmosmicroelectrodearrays
AT ihlestephanj drivingelectrochemicalreactionsatthemicroscaleusingcmosmicroelectrodearrays
AT hengstelerjulian drivingelectrochemicalreactionsatthemicroscaleusingcmosmicroelectrodearrays
AT maurerbenedikt drivingelectrochemicalreactionsatthemicroscaleusingcmosmicroelectrodearrays
AT zhangxinyu drivingelectrochemicalreactionsatthemicroscaleusingcmosmicroelectrodearrays
AT nakatsukanako drivingelectrochemicalreactionsatthemicroscaleusingcmosmicroelectrodearrays