Cargando…
Local imperceptible adversarial attacks against human pose estimation networks
Deep neural networks are vulnerable to attacks from adversarial inputs. Corresponding attack research on human pose estimation (HPE), particularly for body joint detection, has been largely unexplored. Transferring classification-based attack methods to body joint regression tasks is not straightfor...
Autores principales: | Liu, Fuchang, Zhang, Shen, Wang, Hao, Yan, Caiping, Miao, Yongwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Nature Singapore
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10661673/ https://www.ncbi.nlm.nih.gov/pubmed/37985638 http://dx.doi.org/10.1186/s42492-023-00148-1 |
Ejemplares similares
-
Imperceptible magnetoelectronics
por: Melzer, Michael, et al.
Publicado: (2015) -
DualFlow: Generating imperceptible adversarial examples by flow field and normalize flow-based model
por: Liu, Renyang, et al.
Publicado: (2023) -
Where is the imperceptible difference?
por: Wendel-Garcia, Pedro D., et al.
Publicado: (2022) -
An Imperceptible Plastic Electronic Wrap
por: Drack, Michael, et al.
Publicado: (2015) -
Adversarial attacks and adversarial robustness in computational pathology
por: Ghaffari Laleh, Narmin, et al.
Publicado: (2022)