Cargando…

Anticonvulsant effects of isopimpinellin and its interactions with classic antiseizure medications and borneol in the mouse tonic–clonic seizure model: an isobolographic transformation

BACKGROUND: Overwhelming evidence indicates that some naturally occurring coumarins and terpenes are widely used in folk medicine due to their various therapeutic effects affecting the brain. Antiseizure medications (ASMs) are the principal treatment option for epilepsy patients, although some novel...

Descripción completa

Detalles Bibliográficos
Autores principales: Łuszczki, Jarogniew J., Bojar, Hubert, Jankiewicz, Katarzyna, Florek-Łuszczki, Magdalena, Chmielewski, Jarosław, Skalicka-Woźniak, Krystyna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10661746/
https://www.ncbi.nlm.nih.gov/pubmed/37821793
http://dx.doi.org/10.1007/s43440-023-00532-x
Descripción
Sumario:BACKGROUND: Overwhelming evidence indicates that some naturally occurring coumarins and terpenes are widely used in folk medicine due to their various therapeutic effects affecting the brain. Antiseizure medications (ASMs) are the principal treatment option for epilepsy patients, although some novel strategies based on naturally occurring substances are intensively investigated. This study was aimed at determining the influence of isopimpinellin (ISOP—a coumarin) when administered either separately or in combination with borneol (BOR—a monoterpenoid), on the antiseizure potencies of four classic ASMs (carbamazepine (CBZ), phenytoin (PHT), phenobarbital (PB), and valproate (VPA)) in the mouse model of maximal electroshock-induced (MES) tonic–clonic seizures. MATERIALS: Tonic–clonic seizures were evoked experimentally in mice after systemic (ip) administration of the respective doses of ISOP, BOR, and classic ASMs. Interactions for two-drug (ISOP + a classic ASM) and three-drug (ISOP + BOR + a classic ASM) mixtures were assessed isobolographically in the mouse MES model. RESULTS: ISOP (administered alone) had no impact on the anticonvulsant potencies of four classic ASMs. Due to the isobolographic transformation of data, the combination of ISOP + VPA exerted an antagonistic interaction, whereas the two-drug mixtures of ISOP + CBZ, ISOP + PHT, and ISOP + PB produced additive interactions in the mouse MES model. The three-drug combinations of ISOP + BOR with CBZ and PHT produced additive interactions, while the three-drug combinations of ISOP + BOR with PB and VPA exerted synergistic interactions in the mouse MES model. CONCLUSIONS: The most intriguing interaction was that for ISOP + VPA, for which the addition of BOR evoked a transition from antagonism to synergy in the mouse MES model.