Cargando…
An Overview of Supramolecular Platforms Boosting Drug Delivery
Numerous supramolecular platforms inspired by natural self-assembly are exploited as drug delivery systems. The spontaneous arrangement of single building blocks into inorganic and organic structures is determined and controlled by noncovalent forces such as electrostatic interactions, π-π interacti...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10661875/ https://www.ncbi.nlm.nih.gov/pubmed/38028018 http://dx.doi.org/10.1155/2023/8608428 |
Sumario: | Numerous supramolecular platforms inspired by natural self-assembly are exploited as drug delivery systems. The spontaneous arrangement of single building blocks into inorganic and organic structures is determined and controlled by noncovalent forces such as electrostatic interactions, π-π interactions, hydrogen bonds, and van der Waals interactions. This review describes the main structures and characteristics of several building blocks used to obtain stable, self-assembling nanostructures tailored for numerous biological applications. Owing to their versatility, biocompatibility, and controllability, these nanostructures find application in diverse fields ranging from drug/gene delivery, theranostics, tissue engineering, and nanoelectronics. Herein, we described the different approaches used to design and functionalize these nanomaterials to obtain selective drug delivery in a specific disease. In particular, the review highlights the efficiency of these supramolecular structures in applications related to infectious diseases and cancer. |
---|