Cargando…
Bringing uncertainty quantification to the extreme-edge with memristor-based Bayesian neural networks
Safety-critical sensory applications, like medical diagnosis, demand accurate decisions from limited, noisy data. Bayesian neural networks excel at such tasks, offering predictive uncertainty assessment. However, because of their probabilistic nature, they are computationally intensive. An innovativ...
Autores principales: | Bonnet, Djohan, Hirtzlin, Tifenn, Majumdar, Atreya, Dalgaty, Thomas, Esmanhotto, Eduardo, Meli, Valentina, Castellani, Niccolo, Martin, Simon, Nodin, Jean-François, Bourgeois, Guillaume, Portal, Jean-Michel, Querlioz, Damien, Vianello, Elisa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10661910/ https://www.ncbi.nlm.nih.gov/pubmed/37985669 http://dx.doi.org/10.1038/s41467-023-43317-9 |
Ejemplares similares
-
Digital Biologically Plausible Implementation of Binarized Neural Networks With Differential Hafnium Oxide Resistive Memory Arrays
por: Hirtzlin, Tifenn, et al.
Publicado: (2020) -
Synaptic metaplasticity in binarized neural networks
por: Laborieux, Axel, et al.
Publicado: (2021) -
Neural-like computing with populations of superparamagnetic basis functions
por: Mizrahi, Alice, et al.
Publicado: (2018) -
Fluidic memristor: Bringing chemistry to neuromorphic devices
por: Xiong, Tianyi, et al.
Publicado: (2023) -
Using Memristors for Robust Local Learning of Hardware Restricted Boltzmann Machines
por: Ernoult, Maxence, et al.
Publicado: (2019)