Cargando…
Predicting gene regulatory links from single-cell RNA-seq data using graph neural networks
Single-cell RNA-sequencing (scRNA-seq) has emerged as a powerful technique for studying gene expression patterns at the single-cell level. Inferring gene regulatory networks (GRNs) from scRNA-seq data provides insight into cellular phenotypes from the genomic level. However, the high sparsity, noise...
Autores principales: | Mao, Guo, Pang, Zhengbin, Zuo, Ke, Wang, Qinglin, Pei, Xiangdong, Chen, Xinhai, Liu, Jie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10661972/ https://www.ncbi.nlm.nih.gov/pubmed/37985457 http://dx.doi.org/10.1093/bib/bbad414 |
Ejemplares similares
-
An inductive graph neural network model for compound–protein interaction prediction based on a homogeneous graph
por: Wan, Xiaozhe, et al.
Publicado: (2022) -
SIGNET: single-cell RNA-seq-based gene regulatory network prediction using multiple-layer perceptron bagging
por: Luo, Qinhuan, et al.
Publicado: (2021) -
Drug repositioning based on weighted local information augmented graph neural network
por: Meng, Yajie, et al.
Publicado: (2023) -
Quantum annealing-based clustering of single cell RNA-seq data
por: Kubacki, Michal, et al.
Publicado: (2023) -
Subgraph extraction and graph representation learning for single cell Hi-C imputation and clustering
por: Zheng, Jiahao, et al.
Publicado: (2023)