Cargando…
Influence of the carbazole moiety in self-assembling molecules as selective contacts in perovskite solar cells: interfacial charge transfer kinetics and solar-to-energy efficiency effects
The use of self-assembled molecules (SAMs) as hole transport materials (HTMs) in p–i–n perovskite solar cells (iPSCs) has triggered widespread research due to their relatively easy synthetic methods, suitable energy level alignment with the perovskite material and the suppression of chemical defects...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
RSC
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10662120/ https://www.ncbi.nlm.nih.gov/pubmed/38024303 http://dx.doi.org/10.1039/d3na00811h |
_version_ | 1785138137365741568 |
---|---|
author | González, Dora A. Puerto Galvis, Carlos E. Li, Wenhui Méndez, Maria Aktas, Ece Eugenia Martínez-Ferrero Palomares, Emilio |
author_facet | González, Dora A. Puerto Galvis, Carlos E. Li, Wenhui Méndez, Maria Aktas, Ece Eugenia Martínez-Ferrero Palomares, Emilio |
author_sort | González, Dora A. |
collection | PubMed |
description | The use of self-assembled molecules (SAMs) as hole transport materials (HTMs) in p–i–n perovskite solar cells (iPSCs) has triggered widespread research due to their relatively easy synthetic methods, suitable energy level alignment with the perovskite material and the suppression of chemical defects. Herein, three new SAMs have been designed and synthesised based on a carbazole core moiety and modified functional groups through an efficient synthetic protocol. The SAMs have been used to understand the SAM/perovskite interface interactions and establish the relationship between the SAM molecular structure and the resulting performance of the perovskite-based devices. The best devices show efficiencies ranging from 18.9% to 17.5% under standard illumination conditions, which are very close to that of our benchmark EADR03, which has been recently commercialised. Our work aims to provide knowledge on the structure of the molecules versus device function relationship. |
format | Online Article Text |
id | pubmed-10662120 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | RSC |
record_format | MEDLINE/PubMed |
spelling | pubmed-106621202023-10-16 Influence of the carbazole moiety in self-assembling molecules as selective contacts in perovskite solar cells: interfacial charge transfer kinetics and solar-to-energy efficiency effects González, Dora A. Puerto Galvis, Carlos E. Li, Wenhui Méndez, Maria Aktas, Ece Eugenia Martínez-Ferrero Palomares, Emilio Nanoscale Adv Chemistry The use of self-assembled molecules (SAMs) as hole transport materials (HTMs) in p–i–n perovskite solar cells (iPSCs) has triggered widespread research due to their relatively easy synthetic methods, suitable energy level alignment with the perovskite material and the suppression of chemical defects. Herein, three new SAMs have been designed and synthesised based on a carbazole core moiety and modified functional groups through an efficient synthetic protocol. The SAMs have been used to understand the SAM/perovskite interface interactions and establish the relationship between the SAM molecular structure and the resulting performance of the perovskite-based devices. The best devices show efficiencies ranging from 18.9% to 17.5% under standard illumination conditions, which are very close to that of our benchmark EADR03, which has been recently commercialised. Our work aims to provide knowledge on the structure of the molecules versus device function relationship. RSC 2023-10-16 /pmc/articles/PMC10662120/ /pubmed/38024303 http://dx.doi.org/10.1039/d3na00811h Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry González, Dora A. Puerto Galvis, Carlos E. Li, Wenhui Méndez, Maria Aktas, Ece Eugenia Martínez-Ferrero Palomares, Emilio Influence of the carbazole moiety in self-assembling molecules as selective contacts in perovskite solar cells: interfacial charge transfer kinetics and solar-to-energy efficiency effects |
title | Influence of the carbazole moiety in self-assembling molecules as selective contacts in perovskite solar cells: interfacial charge transfer kinetics and solar-to-energy efficiency effects |
title_full | Influence of the carbazole moiety in self-assembling molecules as selective contacts in perovskite solar cells: interfacial charge transfer kinetics and solar-to-energy efficiency effects |
title_fullStr | Influence of the carbazole moiety in self-assembling molecules as selective contacts in perovskite solar cells: interfacial charge transfer kinetics and solar-to-energy efficiency effects |
title_full_unstemmed | Influence of the carbazole moiety in self-assembling molecules as selective contacts in perovskite solar cells: interfacial charge transfer kinetics and solar-to-energy efficiency effects |
title_short | Influence of the carbazole moiety in self-assembling molecules as selective contacts in perovskite solar cells: interfacial charge transfer kinetics and solar-to-energy efficiency effects |
title_sort | influence of the carbazole moiety in self-assembling molecules as selective contacts in perovskite solar cells: interfacial charge transfer kinetics and solar-to-energy efficiency effects |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10662120/ https://www.ncbi.nlm.nih.gov/pubmed/38024303 http://dx.doi.org/10.1039/d3na00811h |
work_keys_str_mv | AT gonzalezdoraa influenceofthecarbazolemoietyinselfassemblingmoleculesasselectivecontactsinperovskitesolarcellsinterfacialchargetransferkineticsandsolartoenergyefficiencyeffects AT puertogalviscarlose influenceofthecarbazolemoietyinselfassemblingmoleculesasselectivecontactsinperovskitesolarcellsinterfacialchargetransferkineticsandsolartoenergyefficiencyeffects AT liwenhui influenceofthecarbazolemoietyinselfassemblingmoleculesasselectivecontactsinperovskitesolarcellsinterfacialchargetransferkineticsandsolartoenergyefficiencyeffects AT mendezmaria influenceofthecarbazolemoietyinselfassemblingmoleculesasselectivecontactsinperovskitesolarcellsinterfacialchargetransferkineticsandsolartoenergyefficiencyeffects AT aktasece influenceofthecarbazolemoietyinselfassemblingmoleculesasselectivecontactsinperovskitesolarcellsinterfacialchargetransferkineticsandsolartoenergyefficiencyeffects AT eugeniamartinezferrero influenceofthecarbazolemoietyinselfassemblingmoleculesasselectivecontactsinperovskitesolarcellsinterfacialchargetransferkineticsandsolartoenergyefficiencyeffects AT palomaresemilio influenceofthecarbazolemoietyinselfassemblingmoleculesasselectivecontactsinperovskitesolarcellsinterfacialchargetransferkineticsandsolartoenergyefficiencyeffects |