Cargando…
Leveraging diverse cell-death patterns to predict the prognosis, immunotherapy and drug sensitivity of clear cell renal cell carcinoma
Clear cell renal cell carcinoma (ccRCC) poses clinical challenges due to its varied prognosis, tumor microenvironment attributes, and responses to immunotherapy. We established a novel Programmed Cell Death-related Signature (PRS) for ccRCC assessment, derived through the Least Absolute Shrinkage an...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10662159/ https://www.ncbi.nlm.nih.gov/pubmed/37985807 http://dx.doi.org/10.1038/s41598-023-46577-z |
_version_ | 1785148517592858624 |
---|---|
author | Zhang, Xi Zhang, Mingcong Song, Lebin Wang, Shuai Wei, Xiyi Shao, Wenchuan Song, Ninghong |
author_facet | Zhang, Xi Zhang, Mingcong Song, Lebin Wang, Shuai Wei, Xiyi Shao, Wenchuan Song, Ninghong |
author_sort | Zhang, Xi |
collection | PubMed |
description | Clear cell renal cell carcinoma (ccRCC) poses clinical challenges due to its varied prognosis, tumor microenvironment attributes, and responses to immunotherapy. We established a novel Programmed Cell Death-related Signature (PRS) for ccRCC assessment, derived through the Least Absolute Shrinkage and Selection Operator (LASSO) regression method. We validated PRS using the E-MTAB-1980 dataset and created PCD-related clusters via non-negative matrix factorization (NMF). Our investigation included an in-depth analysis of immune infiltration scores using various algorithms. Additionally, we integrated data from the Cancer Immunome Atlas (TCIA) for ccRCC immunotherapy insights and leveraged the Genomics of Drug Sensitivity in Cancer (GDSC) database to assess drug sensitivity models. We complemented our findings with single-cell sequencing data and employed the Clinical Proteomic Tumor Analysis Consortium (CPTAC) and qRT-PCR to compare gene expression profiles between cancerous and paracancerous tissues. PRS serves as a valuable tool for prognostication, immune characterization, tumor mutation burden estimation, immunotherapy response prediction, and drug sensitivity assessment in ccRCC. We identify five genes with significant roles in cancer promotion and three genes with cancer-suppressive properties, further validated by qRT-PCR and CPTAC analyses, showcasing gene expression differences in ccRCC tissues. Our study introduces an innovative PCD model that amalgamates diverse cell death patterns to provide accurate predictions for clinical outcomes, mutational profiles, and immune characteristics in ccRCC. Our findings hold promise for advancing personalized treatment strategies in ccRCC patients. |
format | Online Article Text |
id | pubmed-10662159 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-106621592023-11-20 Leveraging diverse cell-death patterns to predict the prognosis, immunotherapy and drug sensitivity of clear cell renal cell carcinoma Zhang, Xi Zhang, Mingcong Song, Lebin Wang, Shuai Wei, Xiyi Shao, Wenchuan Song, Ninghong Sci Rep Article Clear cell renal cell carcinoma (ccRCC) poses clinical challenges due to its varied prognosis, tumor microenvironment attributes, and responses to immunotherapy. We established a novel Programmed Cell Death-related Signature (PRS) for ccRCC assessment, derived through the Least Absolute Shrinkage and Selection Operator (LASSO) regression method. We validated PRS using the E-MTAB-1980 dataset and created PCD-related clusters via non-negative matrix factorization (NMF). Our investigation included an in-depth analysis of immune infiltration scores using various algorithms. Additionally, we integrated data from the Cancer Immunome Atlas (TCIA) for ccRCC immunotherapy insights and leveraged the Genomics of Drug Sensitivity in Cancer (GDSC) database to assess drug sensitivity models. We complemented our findings with single-cell sequencing data and employed the Clinical Proteomic Tumor Analysis Consortium (CPTAC) and qRT-PCR to compare gene expression profiles between cancerous and paracancerous tissues. PRS serves as a valuable tool for prognostication, immune characterization, tumor mutation burden estimation, immunotherapy response prediction, and drug sensitivity assessment in ccRCC. We identify five genes with significant roles in cancer promotion and three genes with cancer-suppressive properties, further validated by qRT-PCR and CPTAC analyses, showcasing gene expression differences in ccRCC tissues. Our study introduces an innovative PCD model that amalgamates diverse cell death patterns to provide accurate predictions for clinical outcomes, mutational profiles, and immune characteristics in ccRCC. Our findings hold promise for advancing personalized treatment strategies in ccRCC patients. Nature Publishing Group UK 2023-11-20 /pmc/articles/PMC10662159/ /pubmed/37985807 http://dx.doi.org/10.1038/s41598-023-46577-z Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Zhang, Xi Zhang, Mingcong Song, Lebin Wang, Shuai Wei, Xiyi Shao, Wenchuan Song, Ninghong Leveraging diverse cell-death patterns to predict the prognosis, immunotherapy and drug sensitivity of clear cell renal cell carcinoma |
title | Leveraging diverse cell-death patterns to predict the prognosis, immunotherapy and drug sensitivity of clear cell renal cell carcinoma |
title_full | Leveraging diverse cell-death patterns to predict the prognosis, immunotherapy and drug sensitivity of clear cell renal cell carcinoma |
title_fullStr | Leveraging diverse cell-death patterns to predict the prognosis, immunotherapy and drug sensitivity of clear cell renal cell carcinoma |
title_full_unstemmed | Leveraging diverse cell-death patterns to predict the prognosis, immunotherapy and drug sensitivity of clear cell renal cell carcinoma |
title_short | Leveraging diverse cell-death patterns to predict the prognosis, immunotherapy and drug sensitivity of clear cell renal cell carcinoma |
title_sort | leveraging diverse cell-death patterns to predict the prognosis, immunotherapy and drug sensitivity of clear cell renal cell carcinoma |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10662159/ https://www.ncbi.nlm.nih.gov/pubmed/37985807 http://dx.doi.org/10.1038/s41598-023-46577-z |
work_keys_str_mv | AT zhangxi leveragingdiversecelldeathpatternstopredicttheprognosisimmunotherapyanddrugsensitivityofclearcellrenalcellcarcinoma AT zhangmingcong leveragingdiversecelldeathpatternstopredicttheprognosisimmunotherapyanddrugsensitivityofclearcellrenalcellcarcinoma AT songlebin leveragingdiversecelldeathpatternstopredicttheprognosisimmunotherapyanddrugsensitivityofclearcellrenalcellcarcinoma AT wangshuai leveragingdiversecelldeathpatternstopredicttheprognosisimmunotherapyanddrugsensitivityofclearcellrenalcellcarcinoma AT weixiyi leveragingdiversecelldeathpatternstopredicttheprognosisimmunotherapyanddrugsensitivityofclearcellrenalcellcarcinoma AT shaowenchuan leveragingdiversecelldeathpatternstopredicttheprognosisimmunotherapyanddrugsensitivityofclearcellrenalcellcarcinoma AT songninghong leveragingdiversecelldeathpatternstopredicttheprognosisimmunotherapyanddrugsensitivityofclearcellrenalcellcarcinoma |