Cargando…
Exploring the relationship between air quality index and lung cancer mortality in India: predictive modeling and impact assessment
The Air Quality Index (AQI) in India is steadily deteriorating, leading to a rise in the mortality rate due to Lung Cancer. This decline in air quality can be attributed to various factors such as PM 2.5, PM 10, and Ozone (O3). To establish a relationship between AQI and Lung Cancer, several predict...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10662209/ https://www.ncbi.nlm.nih.gov/pubmed/37985855 http://dx.doi.org/10.1038/s41598-023-47705-5 |
Sumario: | The Air Quality Index (AQI) in India is steadily deteriorating, leading to a rise in the mortality rate due to Lung Cancer. This decline in air quality can be attributed to various factors such as PM 2.5, PM 10, and Ozone (O3). To establish a relationship between AQI and Lung Cancer, several predictive models including Linear Regression, KNN, Decision Tree, ANN, Random Forest Regression, and XGBoost Regression were employed to estimate pollutant levels and Air Quality Index in India. The models relied on publicly available state-wise Air Pollution Dataset. Among all the models, the XGBoost Regression displayed the highest accuracy, with pollutant level estimations reaching an accuracy range of 81% to 98% during training and testing. The second-highest accuracy range was achieved by Random Forest. The paper also explores the impact of increasing pollution levels on the rising mortality rate among lung cancer patients in India. |
---|